Mercurial > repos > public > sbplib
view +grid/bspline.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 4f7930d2d2c4 |
children |
line wrap: on
line source
% Calculates a D dimensional p-order bspline at t with knots T and control points P. % T = [t0 t1 t2 ... tm] is a 1 x (m+1) vector with non-decresing elements and t0 = 0 tm = 1. % P = [P0 P1 P2 ... Pn] is a D x (n+1) matrix. % knots p+1 to m-p-1 are the internal knots % Implemented from: http://mathworld.wolfram.com/B-Spline.html function C = bspline(t,p,P,T) m = length(T) - 1; n = size(P,2) - 1; D = size(P,1); assert(p == m - n - 1); C = zeros(D,length(t)); for i = 0:n for k = 1:D C(k,:) = C(k,:) + P(k,1+i)*B(i,p,t,T); end end % Curve not defined for t = 1 ? Ugly fix: I = find(t == 1); C(:,I) = repmat(P(:,end),[1,length(I)]); end function o = B(i, j, t, T) if j == 0 o = T(1+i) <= t & t < T(1+i+1); return end if T(1+i+j)-T(1+i) ~= 0 a = (t-T(1+i))/(T(1+i+j)-T(1+i)); else a = t*0; end if T(1+i+j+1)-T(1+i+1) ~= 0 b = (T(1+i+j+1)-t)/(T(1+i+j+1)-T(1+i+1)); else b = t*0; end o = a.*B(i, j-1, t, T) + b.*B(i+1, j-1, t, T); end