view +grid/CurvilinearTest.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 7c1d3fc33f90
children
line wrap: on
line source

function tests = CurvilinearTest()
    tests = functiontests(localfunctions);
end

function testMappingInputGridFunction(testCase)
    in = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    out = {
        [10, 1];
        [10*6, 2];
        [10*5*7, 3];
    };


    % How to test this? Just make sure it runs without errors.

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(size(g.coords),out{i});
    end
end

function testMappingInputComponentMatrix(testCase)
    in = {
        {{1:3}, [1 2 3]'},
        {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'},
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.coords,in{i}{2});
    end
end

function testMappingInputCellOfMatrix(testCase)

    in = {
        {{1:3}, {[1 2 3]'}},
        {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}},
    };

    out = {
        [1 2 3]',
        [1 2 3 4 5 6; 7 8 9 10 11 12]',
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.coords,out{i});
    end
end

function testMappingInputCellOfVectors(testCase)
    in = {
        {{1:3}, {[1 2 3]'}},
        {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}},
    };

    out = {
        [1 2 3]',
        [1 2 3 4 5 6; 7 8 9 10 11 12]',
    };
end

function testMappingInputError(testCase)
    testCase.verifyFail();
end

function testScaling(testCase)
    in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}};
    g = grid.Curvilinear(in{2},in{1}{:});

    testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet');

    g.logicalGrid.h = [2 1];
    testCase.verifyEqual(g.scaling(),[2 1]);
end

function testGetBoundaryNames(testCase)
    in = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    out = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.getBoundaryNames(), out{i});
    end
end

function testGetBoundary(testCase)
    grids = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    boundaries = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };


    for ig = 1:length(grids)
        g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:});

        logicalGrid = grid.Cartesian(grids{ig}{1}{:});

        for ib = 1:length(boundaries{ig})

            logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib});

            x = num2cell(logicalBoundary',2);
            expectedBoundary = grids{ig}{2}(x{:})';
            testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary);
        end
    end
end