Mercurial > repos > public > sbplib
view +grid/CurvilinearTest.m @ 1031:2ef20d00b386 feature/advectionRV
For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:25:06 +0100 |
parents | 7c1d3fc33f90 |
children |
line wrap: on
line source
function tests = CurvilinearTest() tests = functiontests(localfunctions); end function testMappingInputGridFunction(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { [10, 1]; [10*6, 2]; [10*5*7, 3]; }; % How to test this? Just make sure it runs without errors. for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(size(g.coords),out{i}); end end function testMappingInputComponentMatrix(testCase) in = { {{1:3}, [1 2 3]'}, {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,in{i}{2}); end end function testMappingInputCellOfMatrix(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,out{i}); end end function testMappingInputCellOfVectors(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; end function testMappingInputError(testCase) testCase.verifyFail(); end function testScaling(testCase) in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}; g = grid.Curvilinear(in{2},in{1}{:}); testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet'); g.logicalGrid.h = [2 1]; testCase.verifyEqual(g.scaling(),[2 1]); end function testGetBoundaryNames(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.getBoundaryNames(), out{i}); end end function testGetBoundary(testCase) grids = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; boundaries = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for ig = 1:length(grids) g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:}); logicalGrid = grid.Cartesian(grids{ig}{1}{:}); for ib = 1:length(boundaries{ig}) logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib}); x = num2cell(logicalBoundary',2); expectedBoundary = grids{ig}{2}(x{:})'; testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary); end end end