view +grid/CartesianTest.m @ 1031:2ef20d00b386 feature/advectionRV

For easier comparison, return both the first order and residual viscosity when evaluating the residual. Add the first order and residual viscosity to the state of the RungekuttaRV time steppers
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:25:06 +0100
parents 7c1d3fc33f90
children
line wrap: on
line source

function tests = CartesianTest()
    tests = functiontests(localfunctions);
end


function testWarningEmptyGrid(testCase)
    in  = {
        {[]},
        {[],[1]},
        {[1],[2], []},
    };

    for i = 1:length(in)
        testCase.verifyError(@()grid.Cartesian(in{i}{:}),'grid:Cartesian:EmptyGrid');
    end
end

function testN(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [3,6,9,9,27];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.N(),out(i));
    end
end


function testD(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [1,2,2,3,3];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.D(),out(i));
    end
end

function testSize(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = {
        [3],
        [3 2],
        [3 3],
        [3 3 1],
        [3 3 3],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.size(),out{i});
    end
end

function testPoints(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out = {
        [[1; 2]],
        [[1; 1; 2; 2],[3; 4; 3; 4]],
        [[1; 1; 1; 1; 2; 2; 2; 2],[3; 3; 4; 4; 3; 3; 4; 4],[ 5; 6; 5; 6; 5; 6; 5; 6]],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.points(),out{i});
    end
end

function testMatrices(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out{1}{1} = [1; 2];

    out{2}{1} = [1, 1; 2, 2];
    out{2}{2} = [3, 4; 3, 4];

    out{3}{1}(:,:,1) = [1, 1; 2, 2];
    out{3}{1}(:,:,2) = [1, 1; 2, 2];

    out{3}{2}(:,:,1) = [3, 4; 3, 4];
    out{3}{2}(:,:,2) = [3, 4; 3, 4];

    out{3}{3}(:,:,1) = [5, 5; 5, 5];
    out{3}{3}(:,:,2) = [6, 6; 6, 6];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.matrices(),out{i});
    end
end


function testRestrictFuncInvalidInput(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 4 5]},
        {[1 3],[4 5 6 8]},
        {[1 3],[4 6 8]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38; 39; 40];
    };

    out = {
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyError(@()g1.restrictFunc(inGf{i},g2),out{i});
    end
end

function testRestrictFunc(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 5]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
    };

    outGf = {
        [1; 3; 5],
        [14; 16; 18; 34; 36; 38];
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyEqual(g1.restrictFunc(inGf{i}, g2), outGf{i});
    end
end

function testScaling(testCase)
    in = {[1 2 3], [1 2]};
    g = grid.Cartesian(in{:});

    testCase.verifyError(@()g.scaling(),'grid:Cartesian:NoScalingSet');

    g.h = [2 1];
    testCase.verifyEqual(g.scaling(),[2 1]);

end


function testGetBoundaryNames(testCase)
    in = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    out = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.getBoundaryNames(), out{i});
    end
end

function testGetBoundary(testCase)
    grids = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    boundaries = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };


    % 1d
    out{1,1} = 1;
    out{1,2} = 3;

    % 2d
    out{2,1} = [
        1,4;
        1,5;
    ];
    out{2,2} = [
        3,4;
        3,5;
    ];
    out{2,3} = [
        1,4;
        2,4;
        3,4;
    ];
    out{2,4} = [
        1,5;
        2,5;
        3,5;
    ];

    % 3d
    out{3,1} = [
        1,4,6;
        1,4,7;
        1,4,8;
        1,5,6;
        1,5,7;
        1,5,8;
    ];
    out{3,2} = [
        3,4,6;
        3,4,7;
        3,4,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,3} = [
        1,4,6;
        1,4,7;
        1,4,8;
        2,4,6;
        2,4,7;
        2,4,8;
        3,4,6;
        3,4,7;
        3,4,8;
    ];
    out{3,4} = [
        1,5,6;
        1,5,7;
        1,5,8;
        2,5,6;
        2,5,7;
        2,5,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,5} = [
        1,4,6;
        1,5,6;
        2,4,6;
        2,5,6;
        3,4,6;
        3,5,6;
    ];
    out{3,6} = [
        1,4,8;
        1,5,8;
        2,4,8;
        2,5,8;
        3,4,8;
        3,5,8;
    ];

    for ig = 1:length(grids)
        g = grid.Cartesian(grids{ig}{:});
        for ib = 1:length(boundaries{ig})
            testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), out{ig,ib});
        end
    end
end