Mercurial > repos > public > sbplib
view +rv/+time/RungekuttaExteriorRV.m @ 1017:2d7c1333bd6c feature/advectionRV
Add support for using the ODE to approximate the time derivative in the residual
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 11 Dec 2018 16:29:21 +0100 |
parents | 4b42999874c0 |
children | 5359a61cb4d9 |
line wrap: on
line source
classdef RungekuttaExteriorRV < time.Timestepper properties F % RHS of the ODE k % Time step t % Time point v % Solution vector n % Time level coeffs % The coefficents used for the RK time integration % Properties related to the residual viscositys RV % Residual Viscosity operator viscosity % Viscosity vector v_prev % Solution vector at previous time levels, used for the RV evaluation DvDt % Function for computing the time deriative used for the RV evaluation lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % dictates which accuracy the boot-strapping should start from. upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % Dictates the order of accuracy used once the boot-strapping is complete. % Convenience properties. Only for plotting residual dvdt Df end methods % TODO: Decide on how to compute dvdt. function obj = RungekuttaExteriorRV(F, k, t0, v0, RV, DvDt, rkOrder, bdfOrders) obj.F = F; obj.k = k; obj.t = t0; obj.v = v0; obj.n = 0; % Extract the coefficients for the specified rkOrder % used for the RK updates from the Butcher tableua. [s,a,b,c] = time.rk.butcherTableau(rkOrder); obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); obj.RV = RV; % TBD: Decide on if the initialization of the previous stages used by % the BDF should be done here, or if it should be checked for each % step taken. % If it is moved here, then multiple branching stages can be removed in step() % but this will effectively result in a plotted simulation starting from n = upperBdfOrder. % In addition, the properties lowerBdfOrder and upperBdfOrder can be removed. % obj.lowerBdfOrder = bdfOrders.lowerBdfOrder; % obj.upperBdfOrder = bdfOrders.upperBdfOrder; % assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6)); % obj.v_prev = []; % obj.DvDt = rv.time.BdfDerivative(); % obj.viscosity = zeros(size(v0)); % obj.residual = zeros(size(v0)); % obj.dvdt = zeros(size(v0)); % obj.Df = zeros(size(v0)); % Using the ODE: obj.DvDt = DvDt; obj.dvdt = obj.DvDt(obj.v); [obj.viscosity, obj.Df] = RV.evaluate(obj.v,obj.dvdt); obj.residual = obj.dvdt + obj.Df; end function [v, t] = getV(obj) v = obj.v; t = obj.t; end function state = getState(obj) state = struct('v', obj.v, 'residual', obj.residual, 'dvdt', obj.dvdt, 'Df', obj.Df, 'viscosity', obj.viscosity, 't', obj.t); end function obj = step(obj) % Store current time level and update v_prev % numStoredStages = size(obj.v_prev,2); % if (numStoredStages < obj.upperBdfOrder) % obj.v_prev = [obj.v, obj.v_prev]; % numStoredStages = numStoredStages+1; % else % obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1); % obj.v_prev(:,1) = obj.v; % end obj.dvdt = obj.DvDt(obj.v); [obj.viscosity, obj.Df] = obj.RV.evaluate(obj.v,obj.dvdt); obj.residual = obj.dvdt + obj.Df; % Fix the viscosity of the RHS function F F_visc = @(v,t) obj.F(v,t,obj.viscosity); obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); obj.t = obj.t + obj.k; obj.n = obj.n + 1; % %Calculate dvdt and evaluate RV for the new time level % if ((numStoredStages >= obj.lowerBdfOrder) && (numStoredStages <= obj.upperBdfOrder)) % obj.dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k); % [obj.viscosity, obj.Df] = obj.RV.evaluate(obj.v,obj.dvdt); % obj.residual = obj.dvdt + obj.Df; % end end end end