view +time/Timestepper.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 64a9a8a27858
children 8894e9c49e40
line wrap: on
line source

classdef Timestepper < handle
    properties (Abstract)
        t
        k
        n
    end

    methods (Abstract)
         [v,t] = getV(obj)
         obj = step(obj)
    end


    methods
        function [v,t] = stepN(obj,n,progress_bar)
            default_arg('progress_bar',false);

            if ~progress_bar
                obj.stepN_without_progress(n);
            else
                obj.stepN_with_progress(n);
            end

            v = obj.getV;
            t = obj.t;
        end

        function stepN_without_progress(obj, n)
            for i=1:n
                obj.step();
            end
        end

        function stepN_with_progress(obj, n)
            FRAME_RATE = 20;

            steps_to_update = 1;
            steps_since_update = 0;
            last_update = tic();
            s = util.replace_string('','   %d %%',0);
            for i=1:n
                obj.step();

                steps_since_update = steps_since_update + 1;

                if steps_since_update >= steps_to_update
                    s = util.replace_string(s,'   %.2f %%',i/n*100);

                    time_since_update = toc(last_update);
                    time_error = time_since_update - 1/FRAME_RATE;
                    time_per_step = time_since_update/steps_since_update;

                    steps_to_update = max(steps_to_update - 0.9*time_error/time_per_step ,1);

                    steps_since_update = 0;
                    last_update = tic();
                end
            end

            s = util.replace_string(s,'');
        end


        function [v, t] = stepTo(obj, n, progress_bar)
            assertScalar(n);
            default_arg('progress_bar',false);

            [v, t] = obj.stepN(n-obj.n, progress_bar);
        end

        function [v,t] = evolve(obj, tend, progress_bar)
            default_arg('progress_bar',false)
            if ~progress_bar
                obj.evolve_without_progress(tend);
            else
                obj.evolve_with_progress(tend);
            end
            v = obj.getV;
            t = obj.t;
        end

        function evolve_without_progress(obj, tend)
            while obj.t < tend - obj.k/2
                obj.step();
            end
        end

        function evolve_with_progress(obj, tend)
            FRAME_RATE = 20;

            steps_to_update = 1;
            steps_since_update = 0;
            last_update = tic();
            s = util.replace_string('','   %d %%',0);
            while obj.t < tend - obj.k/2
                obj.step();

                steps_since_update = steps_since_update + 1;

                if steps_since_update >= steps_to_update
                    s = util.replace_string(s,'   %.2f %%',obj.t/tend*100);

                    time_since_update = toc(last_update);
                    time_error = time_since_update - 1/FRAME_RATE;
                    time_per_step = time_since_update/steps_since_update;

                    steps_to_update = max(steps_to_update - 0.9*time_error/time_per_step ,1);

                    steps_since_update = 0;
                    last_update = tic();
                end
            end

            s = util.replace_string(s,'');
        end


    end
end