view +time/SBPInTimeScaled.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents e95a0f2f7a8d
children 47e86b5270ad
line wrap: on
line source

classdef SBPInTimeScaled < time.Timestepper
    % The SBP in time method.
    % Implemented for A*v_t = B*v + f(t), v(0) = v0
    % The resulting system of equations is
    %   M*u_next= K*u_prev_end + f
    properties
        A,B
        f

        k % total time step.

        blockSize % number of points in each block
        N % Number of components

        order
        nodes

        Mtilde,Ktilde     % System matrices
        L,U,p,q % LU factorization of M
        e_T

        scaling
        S, Sinv % Scaling matrices

        % Time state
        t
        vtilde
        n
    end

    methods
        function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize)
            default_arg('TYPE','gauss');
            default_arg('f',[]);

            if(strcmp(TYPE,'gauss'))
                default_arg('order',4)
                default_arg('blockSize',4)
            else
                default_arg('order', 8);
                default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE));
            end

            obj.A = A;
            obj.B = B;
            obj.scaling = scaling;

            if ~isempty(f)
                obj.f = f;
            else
                obj.f = @(t)sparse(length(v0),1);
            end

            obj.k = k;
            obj.blockSize = blockSize;
            obj.N = length(v0);

            obj.n = 0;
            obj.t = t0;

            %==== Build the time discretization matrix =====%
            switch TYPE
                case 'equidistant'
                    ops = sbp.D2Standard(blockSize,{0,obj.k},order);
                case 'optimal'
                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order);
                case 'minimal'
                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal');
                case 'gauss'
                    ops = sbp.D1Gauss(blockSize,{0,obj.k});
            end

            I = speye(size(A));
            I_t = speye(blockSize,blockSize);

            D1 = kron(ops.D1, I);
            HI = kron(ops.HI, I);
            e_0 = kron(ops.e_l, I);
            e_T = kron(ops.e_r, I);
            obj.nodes = ops.x;

            % Convert to form M*w = K*v0 + f(t)
            tau = kron(I_t, A) * e_0;
            M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B);

            K = HI*tau;

            obj.S =    kron(I_t, spdiag(scaling));
            obj.Sinv = kron(I_t, spdiag(1./scaling));

            obj.Mtilde = obj.Sinv*M*obj.S;
            obj.Ktilde = obj.Sinv*K*spdiag(scaling);
            obj.e_T = e_T;


            % LU factorization
            [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector');

            obj.vtilde = (1./obj.scaling).*v0;
        end

        function [v,t] = getV(obj)
            v = obj.scaling.*obj.vtilde;
            t = obj.t;
        end

        function obj = step(obj)
            forcing = zeros(obj.blockSize*obj.N,1);

            for i = 1:obj.blockSize
                forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i));
            end

            RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde;

            y = obj.L\RHS(obj.p);
            z = obj.U\y;

            w = zeros(size(z));
            w(obj.q) = z;

            obj.vtilde = obj.e_T'*w;

            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end

    methods(Static)
        function N = smallestBlockSize(order,TYPE)
            default_arg('TYPE','gauss')

            switch TYPE
                case 'gauss'
                    N = 4;
            end
        end
    end
end