Mercurial > repos > public > sbplib
view +time/SBPInTimeScaled.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | e95a0f2f7a8d |
children | 47e86b5270ad |
line wrap: on
line source
classdef SBPInTimeScaled < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 % The resulting system of equations is % M*u_next= K*u_prev_end + f properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes Mtilde,Ktilde % System matrices L,U,p,q % LU factorization of M e_T scaling S, Sinv % Scaling matrices % Time state t vtilde n end methods function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; obj.scaling = scaling; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.S = kron(I_t, spdiag(scaling)); obj.Sinv = kron(I_t, spdiag(1./scaling)); obj.Mtilde = obj.Sinv*M*obj.S; obj.Ktilde = obj.Sinv*K*spdiag(scaling); obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); obj.vtilde = (1./obj.scaling).*v0; end function [v,t] = getV(obj) v = obj.scaling.*obj.vtilde; t = obj.t; end function obj = step(obj) forcing = zeros(obj.blockSize*obj.N,1); for i = 1:obj.blockSize forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.vtilde = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end