view +time/CdiffNonlin.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents d1f9dd55a2b0
children b5e5b195da1e
line wrap: on
line source

classdef CdiffNonlin < time.Timestepper
    properties
        D
        E
        S
        k
        t
        v
        v_prev
        n
    end


    methods
        function obj = CdiffNonlin(D, E, S, k, t0,n0, v, v_prev)
            m = size(D(v),1);
            default_arg('E',0);
            default_arg('S',0);

            if isnumeric(S)
                S = @(v,t)S;
            end

            if isnumeric(E)
                E = @(v)E;
            end


            % m = size(D,1);
            % default_arg('E',sparse(m,m));
            % default_arg('S',sparse(m,1));

            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.k = k;
            obj.t = t0;
            obj.n = n0;
            obj.v = v;
            obj.v_prev = v_prev;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u))
            t = obj.t;
        end

        function obj = step(obj)
            D = obj.D(obj.v);
            E = obj.E(obj.v);
            S = obj.S(obj.v,obj.t);

            m = size(D,1);
            I = speye(m);

            %% Calculate for which indices we need to solve system of equations
            [rows,cols] = find(E);
            j = union(rows,cols);
            i = setdiff(1:m,j);


            %% Calculate matrices need for the timestep
            % Before optimization:  A =  1/k^2 * I - 1/(2*k)*E;
            k = obj.k;

            Aj = 1/k^2 * I(j,j) - 1/(2*k)*E(j,j);
            B =  2/k^2 * I + D;
            C = -1/k^2 * I - 1/(2*k)*E;

            %% Take the timestep
            v = obj.v;
            v_prev = obj.v_prev;

            % Want to solve the seq A*v_next = b where
            b = (B*v + C*v_prev + S);

            % Before optimization:  obj.v = A\b;

            obj.v(i) = k^2*b(i);
            obj.v(j) =  Aj\b(j);

            obj.v_prev = v;

            %% Update state of the timestepper
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end
end