Mercurial > repos > public > sbplib
view +time/CdiffImplicit.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | d5bce13ece23 |
children | d6ede7f5cbf9 |
line wrap: on
line source
classdef CdiffImplicit < time.Timestepper properties A, B, C, G AA, BB, CC k t v, v_prev n % LU factorization L,U,p,q end methods % Solves % A*u_tt + B*u + C*v_t = G(t) % u(t0) = f1 % u_t(t0) = f2 % starting at time t0 with timestep k function obj = CdiffImplicit(A, B, C, G, f1, f2, k, t0) default_arg('A', []); default_arg('C', []); default_arg('G', []); default_arg('f1', 0); default_arg('f2', 0); default_arg('t0', 0); m = size(B,1); if isempty(A) A = speye(m); end if isempty(C) C = sparse(m,m); end if isempty(G) G = @(t) sparse(m,1); end if isempty(f1) f1 = sparse(m,1); end if isempty(f2) f2 = sparse(m,1); end obj.A = A; obj.B = B; obj.C = C; obj.G = G; AA = 1/k^2*A + 1/2*B + 1/(2*k)*C; BB = -2/k^2*A; CC = 1/k^2*A + 1/2*B - 1/(2*k)*C; % AA*v_next + BB*v + CC*v_prev == G(t_n) obj.AA = AA; obj.BB = BB; obj.CC = CC; v_prev = f1; I = speye(m); % v = (1/k^2*A)\((1/k^2*A - 1/2*B)*f1 + (1/k*I - 1/2*C)*f2 + 1/2*G(0)); v = f1 + k*f2; if ~issparse(A) || ~issparse(B) || ~issparse(C) error('LU factorization with full pivoting only works for sparse matrices.') end [L,U,p,q] = lu(AA,'vector'); obj.L = L; obj.U = U; obj.p = p; obj.q = q; obj.k = k; obj.t = t0+k; obj.n = 1; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) % Calculate next time step to be able to do centered diff. v_next = zeros(size(obj.v)); b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; y = obj.L\b(obj.p); z = obj.U\y; v_next(obj.q) = z; vt = (v_next-obj.v_prev)/(2*obj.k); t = obj.t; end function obj = step(obj) b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; obj.v_prev = obj.v; % % Backslash % obj.v = obj.AA\b; % LU with column pivot y = obj.L\b(obj.p); z = obj.U\y; obj.v(obj.q) = z; % Update time obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end %%% Derivation % syms A B C G % syms n k % syms f1 f2 % v = symfun(sym('v(n)'),n); % d = A/k^2 * (v(n+1) - 2*v(n) +v(n-1)) + B/2*(v(n+1)+v(n-1)) + C/(2*k)*(v(n+1) - v(n-1)) == G % ic1 = v(0) == f1 % ic2 = A/k*(v(1)-f1) + k/2*(B*f1 + C*f2 - G) - f2 == 0 % c = collect(d, [v(n) v(n-1) v(n+1)]) % (-(2*A)/k^2)*v(n) + (B/2 + A/k^2 - C/(2*k))*v(n - 1) + (B/2 + A/k^2 + C/(2*k))*v(n + 1) == G % syms AA BB CC % % AA = B/2 + A/k^2 + C/(2*k) % % BB = -(2*A)/k^2 % % CC = B/2 + A/k^2 - C/(2*k) % s = subs(c, [B/2 + A/k^2 + C/(2*k), -(2*A)/k^2, B/2 + A/k^2 - C/(2*k)], [AA, BB, CC]) % ic2_a = collect(ic2, [v(1) f1 f2]) % (A/k)*v(1) + ((B*k)/2 - A/k)*f1 + ((C*k)/2 - 1)*f2 - (G*k)/2 == 0