Mercurial > repos > public > sbplib
view +time/Cdiff.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 151ab2b5a686 |
children | 8894e9c49e40 c9009d5a3101 |
line wrap: on
line source
classdef Cdiff < time.Timestepper properties D E S k t v v_prev n end methods % Solves u_tt = Du + Eu_t + S % D, E, S can either all be constants or all be function handles, % They can also be omitted by setting them equal to the empty matrix. % Cdiff(D, E, S, k, t0, n0, v, v_prev) function obj = Cdiff(D, E, S, k, t0, n0, v, v_prev) m = length(v); default_arg('E',sparse(m,m)); default_arg('S',sparse(m,1)); obj.D = D; obj.E = E; obj.S = S; obj.k = k; obj.t = t0; obj.n = n0; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) t = obj.t; end function obj = step(obj) [obj.v, obj.v_prev] = time.cdiff.cdiff(obj.v, obj.v_prev, obj.k, obj.D, obj.E, obj.S); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end