Mercurial > repos > public > sbplib
view +time/+rk/rk4_stability.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | c6fcee3fcf1b |
children |
line wrap: on
line source
function rk_stability() ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4)); circ = @(z)(abs(z)); % contour(X,Y,z) ax = [-4 2 -3 3]; % hold on fcontour(ruku4,[1,1],[-3, 0.6],[-3.2, 3.2]) hold on r = 2.6; fcontour(circ,[r,r],[-3, 0.6],[-3.2, 3.2],'r') hold off % contour(X,Y,z,[1,1],'b') axis(ax) title('4th order Runge-Kutta stability region') xlabel('Re') ylabel('Im') axis equal grid on box on hold off % surf(X,Y,z) rk4roots() end function fcontour(f,levels,x_lim,y_lim,opt) default_arg('opt','b') x = linspace(x_lim(1),x_lim(2)); y = linspace(y_lim(1),y_lim(2)); [X,Y] = meshgrid(x,y); mu = X+ 1i*Y; z = f(mu); contour(X,Y,z,levels,opt) end function rk4roots() ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4)); % Roots for real evalues: F = @(x)(abs(ruku4(x))-1); real_x = fzero(F,-3); % Roots for imaginary evalues: F = @(x)(abs(ruku4(1i*x))-1); imag_x1 = fzero(F,-3); imag_x2 = fzero(F,3); fprintf('Real x = %f\n',real_x) fprintf('Imag x = %f\n',imag_x1) fprintf('Imag x = %f\n',imag_x2) end