view +scheme/Wave2dCurve.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 706d1c2b4199
children
line wrap: on
line source

classdef Wave2dCurve < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid

        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        c
        J, Ji
        a11, a12, a22

        H % Discrete norm
        Hi
        H_u, H_v % Norms in the x and y directions
        Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_u, Hi_v
        Hiu, Hiv
        e_w, e_e, e_s, e_n
        du_w, dv_w
        du_e, dv_e
        du_s, dv_s
        du_n, dv_n
        gamm_u, gamm_v
        lambda

        Dx, Dy % Physical derivatives

        x_u
        x_v
        y_u
        y_v
    end

    methods
        function obj = Wave2dCurve(g ,order, c, opSet)
            default_arg('opSet',@sbp.D2Variable);
            default_arg('c', 1);

            warning('Use LaplaceCruveilinear instead')

            assert(isa(g, 'grid.Curvilinear'))

            m = g.size();
            m_u = m(1);
            m_v = m(2);
            m_tot = g.N();

            h = g.scaling();
            h_u = h(1);
            h_v = h(2);

            % Operators
            ops_u = opSet(m_u, {0, 1}, order);
            ops_v = opSet(m_v, {0, 1}, order);

            I_u = speye(m_u);
            I_v = speye(m_v);

            D1_u = ops_u.D1;
            D2_u = ops_u.D2;
            H_u =  ops_u.H;
            Hi_u = ops_u.HI;
            e_l_u = ops_u.e_l;
            e_r_u = ops_u.e_r;
            d1_l_u = ops_u.d1_l;
            d1_r_u = ops_u.d1_r;

            D1_v = ops_v.D1;
            D2_v = ops_v.D2;
            H_v =  ops_v.H;
            Hi_v = ops_v.HI;
            e_l_v = ops_v.e_l;
            e_r_v = ops_v.e_r;
            d1_l_v = ops_v.d1_l;
            d1_r_v = ops_v.d1_r;

            Du = kr(D1_u,I_v);
            Dv = kr(I_u,D1_v);

            % Metric derivatives
            coords = g.points();
            x = coords(:,1);
            y = coords(:,2);

            x_u = Du*x;
            x_v = Dv*x;
            y_u = Du*y;
            y_v = Dv*y;

            J = x_u.*y_v - x_v.*y_u;
            a11 =  1./J .* (x_v.^2  + y_v.^2);
            a12 = -1./J .* (x_u.*x_v + y_u.*y_v);
            a22 =  1./J .* (x_u.^2  + y_u.^2);
            lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2));

            % Assemble full operators
            L_12 = spdiags(a12, 0, m_tot, m_tot);
            Duv = Du*L_12*Dv;
            Dvu = Dv*L_12*Du;

            Duu = sparse(m_tot);
            Dvv = sparse(m_tot);
            ind = grid.funcToMatrix(g, 1:m_tot);

            for i = 1:m_v
                D = D2_u(a11(ind(:,i)));
                p = ind(:,i);
                Duu(p,p) = D;
            end

            for i = 1:m_u
                D = D2_v(a22(ind(i,:)));
                p = ind(i,:);
                Dvv(p,p) = D;
            end

            obj.H = kr(H_u,H_v);
            obj.Hi = kr(Hi_u,Hi_v);
            obj.Hu  = kr(H_u,I_v);
            obj.Hv  = kr(I_u,H_v);
            obj.Hiu = kr(Hi_u,I_v);
            obj.Hiv = kr(I_u,Hi_v);

            obj.e_w  = kr(e_l_u,I_v);
            obj.e_e  = kr(e_r_u,I_v);
            obj.e_s  = kr(I_u,e_l_v);
            obj.e_n  = kr(I_u,e_r_v);
            obj.du_w = kr(d1_l_u,I_v);
            obj.dv_w = (obj.e_w'*Dv)';
            obj.du_e = kr(d1_r_u,I_v);
            obj.dv_e = (obj.e_e'*Dv)';
            obj.du_s = (obj.e_s'*Du)';
            obj.dv_s = kr(I_u,d1_l_v);
            obj.du_n = (obj.e_n'*Du)';
            obj.dv_n = kr(I_u,d1_r_v);

            obj.x_u = x_u;
            obj.x_v = x_v;
            obj.y_u = y_u;
            obj.y_v = y_v;

            obj.m = m;
            obj.h = [h_u h_v];
            obj.order = order;
            obj.grid = g;

            obj.c = c;
            obj.J = spdiags(J, 0, m_tot, m_tot);
            obj.Ji = spdiags(1./J, 0, m_tot, m_tot);
            obj.a11 = a11;
            obj.a12 = a12;
            obj.a22 = a22;
            obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv);
            obj.lambda = lambda;

            obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
            obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;

            obj.gamm_u = h_u*ops_u.borrowing.M.d1;
            obj.gamm_v = h_v*ops_v.borrowing.M.d1;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
            default_arg('type','neumann');
            default_arg('parameter', []);

            [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv  ,              ~,          ~, ~, scale_factor] = obj.get_boundary_ops(boundary);
            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    % v denotes the solution in the neighbour domain
                    tuning = 1.2;
                    % tuning = 20.2;
                    [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary);

                    a_n = spdiag(coeff_n);
                    a_t = spdiag(coeff_t);

                    F = (s * a_n * d_n' + s * a_t*d_t')';

                    u = obj;

                    b1 = gamm*u.lambda./u.a11.^2;
                    b2 = gamm*u.lambda./u.a22.^2;

                    tau  = -1./b1 - 1./b2;
                    tau = tuning * spdiag(tau);
                    sig1 = 1;

                    penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e;

                    closure = obj.Ji*obj.c^2 * penalty_parameter_1*e';
                    penalty = -obj.Ji*obj.c^2 * penalty_parameter_1;


                % Neumann boundary condition
                case {'N','n','neumann'}
                    c = obj.c;

                    a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n));
                    a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t));
                    d = (a_n * d_n' + a_t*d_t')';

                    tau1 = -s;
                    tau2 = 0;
                    tau = c.^2 * obj.Ji*(tau1*e + tau2*d);

                    closure = halfnorm_inv*tau*d';
                    penalty = -halfnorm_inv*tau;

                % Characteristic boundary condition
                case {'characteristic', 'char', 'c'}
                    default_arg('parameter', 1);
                    beta = parameter;
                    c = obj.c;

                    a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n));
                    a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t));
                    d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative

                    tau = -c.^2 * 1/beta*obj.Ji*e;

                    warning('is this right?! /c?')
                    closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e';
                    closure{2} = halfnorm_inv*tau*beta*d';
                    penalty = -halfnorm_inv*tau;

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            tuning = 1.2;
            % tuning = 20.2;
            [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary);
            [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            a_n_u = spdiag(coeff_n_u);
            a_t_u = spdiag(coeff_t_u);
            a_n_v = spdiag(coeff_n_v);
            a_t_v = spdiag(coeff_t_v);

            F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')';
            F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')';

            u = obj;
            v = neighbour_scheme;

            b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2;
            b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2;
            b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2;
            b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2;

            tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v);
            tau = tuning * spdiag(tau);
            sig1 = 1/2;
            sig2 = -1/2;

            penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u);
            penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u;


            closure = obj.Ji*obj.c^2 * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u');
            penalty = obj.Ji*obj.c^2 * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        %
        %  I -- the indecies of the boundary points in the grid matrix
        function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary)

            % gridMatrix = zeros(obj.m(2),obj.m(1));
            % gridMatrix(:) = 1:numel(gridMatrix);

            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));

            switch boundary
                case 'w'
                    e = obj.e_w;
                    d_n = obj.du_w;
                    d_t = obj.dv_w;
                    s = -1;

                    I = ind(1,:);
                    coeff_n = obj.a11(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                case 'e'
                    e = obj.e_e;
                    d_n = obj.du_e;
                    d_t = obj.dv_e;
                    s = 1;

                    I = ind(end,:);
                    coeff_n = obj.a11(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2);
                case 's'
                    e = obj.e_s;
                    d_n = obj.dv_s;
                    d_t = obj.du_s;
                    s = -1;

                    I = ind(:,1)';
                    coeff_n = obj.a22(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                case 'n'
                    e = obj.e_n;
                    d_n = obj.dv_n;
                    d_t = obj.du_n;
                    s = 1;

                    I = ind(:,end)';
                    coeff_n = obj.a22(I);
                    coeff_t = obj.a12(I);
                    scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2);
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','e'}
                    halfnorm_inv_n = obj.Hiu;
                    halfnorm_inv_t = obj.Hiv;
                    halfnorm_t = obj.Hv;
                    gamm = obj.gamm_u;
                case {'s','n'}
                    halfnorm_inv_n = obj.Hiv;
                    halfnorm_inv_t = obj.Hiu;
                    halfnorm_t = obj.Hu;
                    gamm = obj.gamm_v;
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end


    end
end