Mercurial > repos > public > sbplib
view +scheme/Wave2dCurve.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 706d1c2b4199 |
children |
line wrap: on
line source
classdef Wave2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm c J, Ji a11, a12, a22 H % Discrete norm Hi H_u, H_v % Norms in the x and y directions Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_u, Hi_v Hiu, Hiv e_w, e_e, e_s, e_n du_w, dv_w du_e, dv_e du_s, dv_s du_n, dv_n gamm_u, gamm_v lambda Dx, Dy % Physical derivatives x_u x_v y_u y_v end methods function obj = Wave2dCurve(g ,order, c, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('c', 1); warning('Use LaplaceCruveilinear instead') assert(isa(g, 'grid.Curvilinear')) m = g.size(); m_u = m(1); m_v = m(2); m_tot = g.N(); h = g.scaling(); h_u = h(1); h_v = h(2); % Operators ops_u = opSet(m_u, {0, 1}, order); ops_v = opSet(m_v, {0, 1}, order); I_u = speye(m_u); I_v = speye(m_v); D1_u = ops_u.D1; D2_u = ops_u.D2; H_u = ops_u.H; Hi_u = ops_u.HI; e_l_u = ops_u.e_l; e_r_u = ops_u.e_r; d1_l_u = ops_u.d1_l; d1_r_u = ops_u.d1_r; D1_v = ops_v.D1; D2_v = ops_v.D2; H_v = ops_v.H; Hi_v = ops_v.HI; e_l_v = ops_v.e_l; e_r_v = ops_v.e_r; d1_l_v = ops_v.d1_l; d1_r_v = ops_v.d1_r; Du = kr(D1_u,I_v); Dv = kr(I_u,D1_v); % Metric derivatives coords = g.points(); x = coords(:,1); y = coords(:,2); x_u = Du*x; x_v = Dv*x; y_u = Du*y; y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); % Assemble full operators L_12 = spdiags(a12, 0, m_tot, m_tot); Duv = Du*L_12*Dv; Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v D = D2_u(a11(ind(:,i))); p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u D = D2_v(a22(ind(i,:))); p = ind(i,:); Dvv(p,p) = D; end obj.H = kr(H_u,H_v); obj.Hi = kr(Hi_u,Hi_v); obj.Hu = kr(H_u,I_v); obj.Hv = kr(I_u,H_v); obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); obj.e_w = kr(e_l_u,I_v); obj.e_e = kr(e_r_u,I_v); obj.e_s = kr(I_u,e_l_v); obj.e_n = kr(I_u,e_r_v); obj.du_w = kr(d1_l_u,I_v); obj.dv_w = (obj.e_w'*Dv)'; obj.du_e = kr(d1_r_u,I_v); obj.dv_e = (obj.e_e'*Dv)'; obj.du_s = (obj.e_s'*Du)'; obj.dv_s = kr(I_u,d1_l_v); obj.du_n = (obj.e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); obj.x_u = x_u; obj.x_v = x_v; obj.y_u = y_u; obj.y_v = y_v; obj.m = m; obj.h = [h_u h_v]; obj.order = order; obj.grid = g; obj.c = c; obj.J = spdiags(J, 0, m_tot, m_tot); obj.Ji = spdiags(1./J, 0, m_tot, m_tot); obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); obj.lambda = lambda; obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; obj.gamm_u = h_u*ops_u.borrowing.M.d1; obj.gamm_v = h_v*ops_v.borrowing.M.d1; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); default_arg('parameter', []); [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary); a_n = spdiag(coeff_n); a_t = spdiag(coeff_t); F = (s * a_n * d_n' + s * a_t*d_t')'; u = obj; b1 = gamm*u.lambda./u.a11.^2; b2 = gamm*u.lambda./u.a22.^2; tau = -1./b1 - 1./b2; tau = tuning * spdiag(tau); sig1 = 1; penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; % Neumann boundary condition case {'N','n','neumann'} c = obj.c; a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = (a_n * d_n' + a_t*d_t')'; tau1 = -s; tau2 = 0; tau = c.^2 * obj.Ji*(tau1*e + tau2*d); closure = halfnorm_inv*tau*d'; penalty = -halfnorm_inv*tau; % Characteristic boundary condition case {'characteristic', 'char', 'c'} default_arg('parameter', 1); beta = parameter; c = obj.c; a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative tau = -c.^2 * 1/beta*obj.Ji*e; warning('is this right?! /c?') closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e'; closure{2} = halfnorm_inv*tau*beta*d'; penalty = -halfnorm_inv*tau; % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain tuning = 1.2; % tuning = 20.2; [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary); [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a_n_u = spdiag(coeff_n_u); a_t_u = spdiag(coeff_t_u); a_n_v = spdiag(coeff_n_v); a_t_v = spdiag(coeff_t_v); F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')'; F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')'; u = obj; v = neighbour_scheme; b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); tau = tuning * spdiag(tau); sig1 = 1/2; sig2 = -1/2; penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; closure = obj.Ji*obj.c^2 * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u'); penalty = obj.Ji*obj.c^2 * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary % % I -- the indecies of the boundary points in the grid matrix function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) % gridMatrix = zeros(obj.m(2),obj.m(1)); % gridMatrix(:) = 1:numel(gridMatrix); ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' e = obj.e_w; d_n = obj.du_w; d_t = obj.dv_w; s = -1; I = ind(1,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 'e' e = obj.e_e; d_n = obj.du_e; d_t = obj.dv_e; s = 1; I = ind(end,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 's' e = obj.e_s; d_n = obj.dv_s; d_t = obj.du_s; s = -1; I = ind(:,1)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); case 'n' e = obj.e_n; d_n = obj.dv_n; d_t = obj.du_n; s = 1; I = ind(:,end)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','e'} halfnorm_inv_n = obj.Hiu; halfnorm_inv_t = obj.Hiv; halfnorm_t = obj.Hv; gamm = obj.gamm_u; case {'s','n'} halfnorm_inv_n = obj.Hiv; halfnorm_inv_t = obj.Hiu; halfnorm_t = obj.Hu; gamm = obj.gamm_v; end end function N = size(obj) N = prod(obj.m); end end end