Mercurial > repos > public > sbplib
view +scheme/Utux2d.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 8a9393084b30 |
children | 433c89bf19e0 |
line wrap: on
line source
classdef Utux2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation a % Wave speed a = [a1, a2]; % Can either be a constant vector or a cell array of function handles. H % Discrete norm H_x, H_y % Norms in the x and y directions Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms % Derivatives Dx, Dy % Boundary operators e_w, e_e, e_s, e_n D % Total discrete operator end methods function obj = Utux2d(g ,order, a, fluxSplitting, opSet) default_arg('a',1/sqrt(2)*[1, 1]); default_arg('opSet',@sbp.D2Standard); default_arg('fluxSplitting',[]); assertType(g, 'grid.Cartesian'); if iscell(a) a1 = grid.evalOn(g, a{1}); a2 = grid.evalOn(g, a{2}); a = {spdiag(a1), spdiag(a2)}; else a = {a(1), a(2)}; end m = g.size(); m_x = m(1); m_y = m(2); m_tot = g.N(); xlim = {g.x{1}(1), g.x{1}(end)}; ylim = {g.x{2}(1), g.x{2}(end)}; obj.grid = g; % Operator sets ops_x = opSet(m_x, xlim, order); ops_y = opSet(m_y, ylim, order); Ix = speye(m_x); Iy = speye(m_y); % Norms Hx = ops_x.H; Hy = ops_y.H; Hxi = ops_x.HI; Hyi = ops_y.HI; obj.H_x = Hx; obj.H_y = Hy; obj.H = kron(Hx,Hy); obj.Hi = kron(Hxi,Hyi); obj.Hx = kron(Hx,Iy); obj.Hy = kron(Ix,Hy); obj.Hxi = kron(Hxi,Iy); obj.Hyi = kron(Ix,Hyi); % Derivatives if (isequal(opSet,@sbp.D1Upwind)) Dx = (ops_x.Dp + ops_x.Dm)/2; Dy = (ops_y.Dp + ops_y.Dm)/2; obj.Dx = kron(Dx,Iy); obj.Dy = kron(Ix,Dy); DissOpx = (ops_x.Dm - ops_x.Dp)/2; DissOpy = (ops_y.Dm - ops_y.Dp)/2; DissOpx = kron(DissOpx,Iy); DissOpy = kron(Ix,DissOpy); obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy + fluxSplitting{1}*DissOpx + fluxSplitting{2}*DissOpy); else Dx = ops_x.D1; Dy = ops_y.D1; obj.Dx = kron(Dx,Iy); obj.Dy = kron(Ix,Dy); obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); end % Boundary operators obj.e_w = kr(ops_x.e_l, Iy); obj.e_e = kr(ops_x.e_r, Iy); obj.e_s = kr(Ix, ops_y.e_l); obj.e_n = kr(Ix, ops_y.e_r); obj.m = m; obj.h = [ops_x.h ops_y.h]; obj.order = order; obj.a = a; end % Closure functions return the opertors applied to the own domain to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. %TBD Remove type here? Only dirichlet applicable? % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); sigma_left = -1; % Scalar penalty parameter for left boundaries (West/South) sigma_right = 1; % Scalar penalty parameter for right boundaries (East/North) switch boundary % Can only specify boundary condition where there is inflow % Extract the postivie resp. negative part of a, for the left % resp. right boundaries, and set other values of a to zero. % Then the closure will effectively only contribute to inflow boundaries case {'w','W','west','West'} a_inflow = obj.a{1}; a_inflow(a_inflow < 0) = 0; tau = sigma_left*a_inflow*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; case {'e','E','east','East'} a_inflow = obj.a{1}; a_inflow(a_inflow > 0) = 0; tau = sigma_right*a_inflow*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; case {'s','S','south','South'} a_inflow = obj.a{2}; a_inflow(a_inflow < 0) = 0; tau = sigma_left*a_inflow*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; case {'n','N','north','North'} a_inflow = obj.a{2}; a_inflow(a_inflow > 0) = 0; tau = sigma_right*a_inflow*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; end penalty = -obj.Hi*tau; end % type Struct that specifies the interface coupling. % Fields: % -- couplingType String, type of interface coupling % % Default: 'upwind'. Other: 'centered' % -- interpolation: type of interpolation, default 'none' % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. % Default {0,0} gives zero damping. function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) defaultType.couplingType = 'upwind'; defaultType.interpolation = 'none'; defaultType.interpolationDamping = {0,0}; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) couplingType = type.couplingType; % Get neighbour boundary operator switch neighbour_boundary case {'e','E','east','East'} e_neighbour = neighbour_scheme.e_e; case {'w','W','west','West'} e_neighbour = neighbour_scheme.e_w; case {'n','N','north','North'} e_neighbour = neighbour_scheme.e_n; case {'s','S','south','South'} e_neighbour = neighbour_scheme.e_s; end switch couplingType % Upwind coupling (energy dissipation) case 'upwind' sigma_ds = -1; %"Downstream" penalty sigma_us = 0; %"Upstream" penalty % Energy-preserving coupling (no energy dissipation) case 'centered' sigma_ds = -1/2; %"Downstream" penalty sigma_us = 1/2; %"Upstream" penalty otherwise error(['Interface coupling type ' couplingType ' is not available.']) end switch boundary case {'w','W','west','West'} tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; penalty = -obj.Hi*tau*e_neighbour'; case {'e','E','east','East'} tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; penalty = -obj.Hi*tau*e_neighbour'; case {'s','S','south','South'} tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; penalty = -obj.Hi*tau*e_neighbour'; case {'n','N','north','North'} tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; penalty = -obj.Hi*tau*e_neighbour'; end end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) % User can request special interpolation operators by specifying type.interpOpSet default_field(type, 'interpOpSet', @sbp.InterpOpsOP); interpOpSet = type.interpOpSet; couplingType = type.couplingType; interpolationDamping = type.interpolationDamping; % Get neighbour boundary operator switch neighbour_boundary case {'e','E','east','East'} e_neighbour = neighbour_scheme.e_e; case {'w','W','west','West'} e_neighbour = neighbour_scheme.e_w; case {'n','N','north','North'} e_neighbour = neighbour_scheme.e_n; case {'s','S','south','South'} e_neighbour = neighbour_scheme.e_s; end switch couplingType % Upwind coupling (energy dissipation) case 'upwind' sigma_ds = -1; %"Downstream" penalty sigma_us = 0; %"Upstream" penalty % Energy-preserving coupling (no energy dissipation) case 'centered' sigma_ds = -1/2; %"Downstream" penalty sigma_us = 1/2; %"Upstream" penalty otherwise error(['Interface coupling type ' couplingType ' is not available.']) end int_damp_us = interpolationDamping{1}; int_damp_ds = interpolationDamping{2}; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Find the number of grid points along the interface switch boundary case {'w','e'} m_u = obj.m(2); case {'s','n'} m_u = obj.m(1); end m_v = size(e_neighbour, 2); % Build interpolation operators intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); Iu2v = intOps.Iu2v; Iv2u = intOps.Iv2u; I_local2neighbour_ds = intOps.Iu2v.bad; I_local2neighbour_us = intOps.Iu2v.good; I_neighbour2local_ds = intOps.Iv2u.good; I_neighbour2local_us = intOps.Iv2u.bad; I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; switch boundary case {'w','W','west','West'} tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; closure = obj.Hi*tau*obj.e_w'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; beta = int_damp_ds*obj.a{1}... *obj.e_w*obj.H_y; closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; case {'e','E','east','East'} tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; closure = obj.Hi*tau*obj.e_e'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; beta = int_damp_us*obj.a{1}... *obj.e_e*obj.H_y; closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; case {'s','S','south','South'} tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; closure = obj.Hi*tau*obj.e_s'; penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; beta = int_damp_ds*obj.a{2}... *obj.e_s*obj.H_x; closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; case {'n','N','north','North'} tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; closure = obj.Hi*tau*obj.e_n'; penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; beta = int_damp_us*obj.a{2}... *obj.e_n*obj.H_x; closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end