view +scheme/Utux2d.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 8a9393084b30
children 433c89bf19e0
line wrap: on
line source

classdef Utux2d < scheme.Scheme
   properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        grid % Grid
        order % Order accuracy for the approximation

        a % Wave speed a = [a1, a2];
          % Can either be a constant vector or a cell array of function handles.

        H % Discrete norm
        H_x, H_y % Norms in the x and y directions
        Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms

        % Derivatives
        Dx, Dy

        % Boundary operators
        e_w, e_e, e_s, e_n

        D % Total discrete operator
    end


    methods
         function obj = Utux2d(g ,order, a, fluxSplitting, opSet)

            default_arg('a',1/sqrt(2)*[1, 1]);
            default_arg('opSet',@sbp.D2Standard);
            default_arg('fluxSplitting',[]);

            assertType(g, 'grid.Cartesian');
            if iscell(a)
                a1 = grid.evalOn(g, a{1});
                a2 = grid.evalOn(g, a{2});
                a = {spdiag(a1), spdiag(a2)};
            else
                a = {a(1), a(2)};
            end

            m = g.size();
            m_x = m(1);
            m_y = m(2);
            m_tot = g.N();

            xlim = {g.x{1}(1), g.x{1}(end)};
            ylim = {g.x{2}(1), g.x{2}(end)};
            obj.grid = g;

            % Operator sets
            ops_x = opSet(m_x, xlim, order);
            ops_y = opSet(m_y, ylim, order);
            Ix = speye(m_x);
            Iy = speye(m_y);

            % Norms
            Hx = ops_x.H;
            Hy = ops_y.H;
            Hxi = ops_x.HI;
            Hyi = ops_y.HI;

            obj.H_x = Hx;
            obj.H_y = Hy;
            obj.H = kron(Hx,Hy);
            obj.Hi = kron(Hxi,Hyi);
            obj.Hx = kron(Hx,Iy);
            obj.Hy = kron(Ix,Hy);
            obj.Hxi = kron(Hxi,Iy);
            obj.Hyi = kron(Ix,Hyi);

            % Derivatives
            if (isequal(opSet,@sbp.D1Upwind))
                Dx = (ops_x.Dp + ops_x.Dm)/2;
                Dy = (ops_y.Dp + ops_y.Dm)/2;
                obj.Dx = kron(Dx,Iy);
                obj.Dy = kron(Ix,Dy);
                DissOpx = (ops_x.Dm - ops_x.Dp)/2;
                DissOpy = (ops_y.Dm - ops_y.Dp)/2;
                DissOpx = kron(DissOpx,Iy);
                DissOpy = kron(Ix,DissOpy);

                obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy + fluxSplitting{1}*DissOpx + fluxSplitting{2}*DissOpy);
            else
                Dx = ops_x.D1;
                Dy = ops_y.D1;
                obj.Dx = kron(Dx,Iy);
                obj.Dy = kron(Ix,Dy);

                obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy);
            end

            % Boundary operators
            obj.e_w = kr(ops_x.e_l, Iy);
            obj.e_e = kr(ops_x.e_r, Iy);
            obj.e_s = kr(Ix, ops_y.e_l);
            obj.e_n = kr(Ix, ops_y.e_r);

            obj.m = m;
            obj.h = [ops_x.h ops_y.h];
            obj.order = order;
            obj.a = a;
        end
        % Closure functions return the opertors applied to the own domain to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several. %TBD Remove type here? Only dirichlet applicable?
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type)
            default_arg('type','dirichlet');
            sigma_left = -1; % Scalar penalty parameter for left boundaries (West/South)
            sigma_right = 1; % Scalar penalty parameter for right boundaries (East/North)
            switch boundary
                % Can only specify boundary condition where there is inflow
                % Extract the postivie resp. negative part of a, for the left
                % resp. right boundaries, and set other values of a to zero.
                % Then the closure will effectively only contribute to inflow boundaries
                case {'w','W','west','West'}
                    a_inflow = obj.a{1};
                    a_inflow(a_inflow < 0) = 0;
                    tau = sigma_left*a_inflow*obj.e_w*obj.H_y;
                    closure = obj.Hi*tau*obj.e_w';
                case {'e','E','east','East'}
                    a_inflow = obj.a{1};
                    a_inflow(a_inflow > 0) = 0;
                    tau = sigma_right*a_inflow*obj.e_e*obj.H_y;
                    closure = obj.Hi*tau*obj.e_e';
                case {'s','S','south','South'}
                    a_inflow = obj.a{2};
                    a_inflow(a_inflow < 0) = 0;
                    tau = sigma_left*a_inflow*obj.e_s*obj.H_x;
                    closure = obj.Hi*tau*obj.e_s';
                case {'n','N','north','North'}
                    a_inflow = obj.a{2};
                    a_inflow(a_inflow > 0) = 0;
                    tau = sigma_right*a_inflow*obj.e_n*obj.H_x;
                    closure = obj.Hi*tau*obj.e_n';
            end
            penalty = -obj.Hi*tau;
        end

        % type     Struct that specifies the interface coupling.
        %          Fields:
        %          -- couplingType             String, type of interface coupling
        %                                       % Default: 'upwind'. Other: 'centered'
        %          -- interpolation:    type of interpolation, default 'none'
        %          -- interpolationDamping:    damping on upstream and downstream sides, when using interpolation.
        %                                      Default {0,0} gives zero damping.
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            defaultType.couplingType = 'upwind';
            defaultType.interpolation = 'none';
            defaultType.interpolationDamping = {0,0};
            default_struct('type', defaultType);

            switch type.interpolation
            case {'none', ''}
                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            case {'op','OP'}
                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            otherwise
                error('Unknown type of interpolation: %s ', type.interpolation);
            end
        end

        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
            couplingType = type.couplingType;

            % Get neighbour boundary operator
            switch neighbour_boundary
             case {'e','E','east','East'}
                 e_neighbour = neighbour_scheme.e_e;
             case {'w','W','west','West'}
                 e_neighbour = neighbour_scheme.e_w;
             case {'n','N','north','North'}
                 e_neighbour = neighbour_scheme.e_n;
             case {'s','S','south','South'}
                 e_neighbour = neighbour_scheme.e_s;
            end

            switch couplingType

            % Upwind coupling (energy dissipation)
            case 'upwind'
                 sigma_ds = -1; %"Downstream" penalty
                 sigma_us = 0; %"Upstream" penalty

            % Energy-preserving coupling (no energy dissipation)
            case 'centered'
                 sigma_ds = -1/2; %"Downstream" penalty
                 sigma_us = 1/2; %"Upstream" penalty

            otherwise
                error(['Interface coupling type ' couplingType ' is not available.'])
            end

            switch boundary
                case {'w','W','west','West'}
                    tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y;
                    closure = obj.Hi*tau*obj.e_w';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'e','E','east','East'}
                    tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y;
                    closure = obj.Hi*tau*obj.e_e';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'s','S','south','South'}
                    tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x;
                    closure = obj.Hi*tau*obj.e_s';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'n','N','north','North'}
                    tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x;
                    closure = obj.Hi*tau*obj.e_n';
                    penalty = -obj.Hi*tau*e_neighbour';
             end

         end

         function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            % User can request special interpolation operators by specifying type.interpOpSet
            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);

            interpOpSet = type.interpOpSet;
            couplingType = type.couplingType;
            interpolationDamping = type.interpolationDamping;

            % Get neighbour boundary operator
            switch neighbour_boundary
             case {'e','E','east','East'}
                 e_neighbour = neighbour_scheme.e_e;
             case {'w','W','west','West'}
                 e_neighbour = neighbour_scheme.e_w;
             case {'n','N','north','North'}
                 e_neighbour = neighbour_scheme.e_n;
             case {'s','S','south','South'}
                 e_neighbour = neighbour_scheme.e_s;
            end

            switch couplingType

            % Upwind coupling (energy dissipation)
            case 'upwind'
                 sigma_ds = -1; %"Downstream" penalty
                 sigma_us = 0; %"Upstream" penalty

            % Energy-preserving coupling (no energy dissipation)
            case 'centered'
                 sigma_ds = -1/2; %"Downstream" penalty
                 sigma_us = 1/2; %"Upstream" penalty

            otherwise
            error(['Interface coupling type ' couplingType ' is not available.'])
            end

            int_damp_us = interpolationDamping{1};
            int_damp_ds = interpolationDamping{2};

            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            % Find the number of grid points along the interface
            switch boundary
                case {'w','e'}
                    m_u = obj.m(2);
                case {'s','n'}
                    m_u = obj.m(1);
            end
            m_v = size(e_neighbour, 2);

            % Build interpolation operators
            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
            Iu2v = intOps.Iu2v;
            Iv2u = intOps.Iv2u;

            I_local2neighbour_ds = intOps.Iu2v.bad;
            I_local2neighbour_us = intOps.Iu2v.good;
            I_neighbour2local_ds = intOps.Iv2u.good;
            I_neighbour2local_us = intOps.Iv2u.bad;

            I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us;
            I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds;


            switch boundary
            case {'w','W','west','West'}
                tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y;
                closure = obj.Hi*tau*obj.e_w';
                penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';

                beta = int_damp_ds*obj.a{1}...
                        *obj.e_w*obj.H_y;
                closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w';
            case {'e','E','east','East'}
                tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y;
                closure = obj.Hi*tau*obj.e_e';
                penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';

                beta = int_damp_us*obj.a{1}...
                        *obj.e_e*obj.H_y;
                closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e';
            case {'s','S','south','South'}
                tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x;
                closure = obj.Hi*tau*obj.e_s';
                penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';

                beta = int_damp_ds*obj.a{2}...
                        *obj.e_s*obj.H_x;
                closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s';
            case {'n','N','north','North'}
                tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x;
                closure = obj.Hi*tau*obj.e_n';
                penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';

                beta = int_damp_us*obj.a{2}...
                        *obj.e_n*obj.H_x;
                closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n';
             end


         end

        function N = size(obj)
            N = obj.m;
        end

    end

    methods(Static)
        % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u
        % and bound_v of scheme schm_v.
        %   [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l')
        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
        end
    end
end