view +scheme/Schrodinger2d.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 3dd7f87c9a1b
children 78db023a7fe3
line wrap: on
line source

classdef Schrodinger2d < scheme.Scheme

% Discretizes the Laplacian with constant coefficent,
% in the Schrödinger equation way (i.e., the discretization matrix is not necessarily
% definite)
% u_t = a*i*Laplace u
% opSet should be cell array of opSets, one per dimension. This
% is useful if we have periodic BC in one direction.

    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid
        dim

        order % Order of accuracy for the approximation

        % Diagonal matrix for variable coefficients
        a % Constant coefficient

        D % Total operator
        D1 % First derivatives

        % Second derivatives
        D2

        H, Hi % Inner products
        e_l, e_r
        d1_l, d1_r % Normal derivatives at the boundary
        e_w, e_e, e_s, e_n
        d_w, d_e, d_s, d_n

        H_boundary % Boundary inner products

    end

    methods

        function obj = Schrodinger2d(g ,order, a, opSet)
            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
            default_arg('a',1);
            dim = 2;

            assertType(g, 'grid.Cartesian');
            if isa(a, 'function_handle')
                a = grid.evalOn(g, a);
                a = spdiag(a);
            end

            m = g.size();
            m_tot = g.N();

            h = g.scaling();
            xlim = {g.x{1}(1), g.x{1}(end)};
            ylim = {g.x{2}(1), g.x{2}(end)};
            lim = {xlim, ylim};

            % 1D operators
            ops = cell(dim,1);
            for i = 1:dim
                ops{i} = opSet{i}(m(i), lim{i}, order);
            end

            I = cell(dim,1);
            D1 = cell(dim,1);
            D2 = cell(dim,1);
            H = cell(dim,1);
            Hi = cell(dim,1);
            e_l = cell(dim,1);
            e_r = cell(dim,1);
            d1_l = cell(dim,1);
            d1_r = cell(dim,1);

            for i = 1:dim
                I{i} = speye(m(i));
                D1{i} = ops{i}.D1;
                D2{i} = ops{i}.D2;
                H{i} =  ops{i}.H;
                Hi{i} = ops{i}.HI;
                e_l{i} = ops{i}.e_l;
                e_r{i} = ops{i}.e_r;
                d1_l{i} = ops{i}.d1_l;
                d1_r{i} = ops{i}.d1_r;
            end

            % Constant coeff D2
            for i = 1:dim
                D2{i} = D2{i}(ones(m(i),1));
            end

            %====== Assemble full operators ========
            obj.D1 = cell(dim,1);
            obj.D2 = cell(dim,1);
            obj.e_l = cell(dim,1);
            obj.e_r = cell(dim,1);
            obj.d1_l = cell(dim,1);
            obj.d1_r = cell(dim,1);

            % D1
            obj.D1{1} = kron(D1{1},I{2});
            obj.D1{2} = kron(I{1},D1{2});

            % Boundary operators
            obj.e_l{1} = kron(e_l{1},I{2});
            obj.e_l{2} = kron(I{1},e_l{2});
            obj.e_r{1} = kron(e_r{1},I{2});
            obj.e_r{2} = kron(I{1},e_r{2});

            obj.d1_l{1} = kron(d1_l{1},I{2});
            obj.d1_l{2} = kron(I{1},d1_l{2});
            obj.d1_r{1} = kron(d1_r{1},I{2});
            obj.d1_r{2} = kron(I{1},d1_r{2});

            % D2
            obj.D2{1} = kron(D2{1},I{2});
            obj.D2{2} = kron(I{1},D2{2});

            % Quadratures
            obj.H = kron(H{1},H{2});
            obj.Hi = inv(obj.H);
            obj.H_boundary = cell(dim,1);
            obj.H_boundary{1} = H{2};
            obj.H_boundary{2} = H{1};

            % Differentiation matrix D (without SAT)
            D2 = obj.D2;
            D = sparse(m_tot,m_tot);
            for j = 1:dim
                D = D + a*1i*D2{j};
            end
            obj.D = D;
            %=========================================%

            % Misc.
            obj.m = m;
            obj.h = h;
            obj.order = order;
            obj.grid = g;
            obj.dim = dim;
            obj.a = a;
            obj.e_w = obj.e_l{1};
            obj.e_e = obj.e_r{1};
            obj.e_s = obj.e_l{2};
            obj.e_n = obj.e_r{2};
            obj.d_w = obj.d1_l{1};
            obj.d_e = obj.d1_r{1};
            obj.d_s = obj.d1_l{2};
            obj.d_n = obj.d1_r{2};

        end


        % Closure functions return the operators applied to the own domain to close the boundary
        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
            default_arg('type','Neumann');
            default_arg('parameter', []);

            % j is the coordinate direction of the boundary
            % nj: outward unit normal component.
            % nj = -1 for west, south, bottom boundaries
            % nj = 1  for east, north, top boundaries
            [j, nj] = obj.get_boundary_number(boundary);
            switch nj
            case 1
                e = obj.e_r;
                d = obj.d1_r;
            case -1
                e = obj.e_l;
                d = obj.d1_l;
            end

            Hi = obj.Hi;
            H_gamma = obj.H_boundary{j};
            a = e{j}'*obj.a*e{j};

            switch type

            % Dirichlet boundary condition
            case {'D','d','dirichlet','Dirichlet'}
                    closure =  nj*Hi*d{j}*a*1i*H_gamma*(e{j}' );
                    penalty = -nj*Hi*d{j}*a*1i*H_gamma;

            % Free boundary condition
            case {'N','n','neumann','Neumann'}
                    closure = -nj*Hi*e{j}*a*1i*H_gamma*(d{j}' );
                    penalty =  nj*Hi*e{j}*a*1i*H_gamma;

            % Unknown boundary condition
            otherwise
                error('No such boundary condition: type = %s',type);
            end
        end

        % type     Struct that specifies the interface coupling.
        %          Fields:
        %          -- interpolation:    type of interpolation, default 'none'
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            defaultType.interpolation = 'none';
            default_struct('type', defaultType);

            switch type.interpolation
            case {'none', ''}
                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            case {'op','OP'}
                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            otherwise
                error('Unknown type of interpolation: %s ', type.interpolation);
            end
        end

        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain

            % Get boundary operators
            [e_neighbour, d_neighbour] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
            [e, d, H_gamma] = obj.get_boundary_ops(boundary);
            Hi = obj.Hi;
            a = obj.a;

            % Get outward unit normal component
            [~, n] = obj.get_boundary_number(boundary);

            Hi = obj.Hi;
            sigma = -n*1i*a/2;
            tau = -n*(1i*a)'/2;

            closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d';
            penalty = -tau*Hi*d*H_gamma*e_neighbour' ...
                      -sigma*Hi*e*H_gamma*d_neighbour';

        end

        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            % User can request special interpolation operators by specifying type.interpOpSet
            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);
            interpOpSet = type.interpOpSet;

            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_v, d_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
            [e_u, d_u, H_gamma] = obj.get_boundary_ops(boundary);
            Hi = obj.Hi;
            a = obj.a;

            % Get outward unit normal component
            [~, n] = obj.get_boundary_number(boundary);

            % Find the number of grid points along the interface
            m_u = size(e_u, 2);
            m_v = size(e_v, 2);

            % Build interpolation operators
            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
            Iu2v = intOps.Iu2v;
            Iv2u = intOps.Iv2u;

            sigma = -n*1i*a/2;
            tau = -n*(1i*a)'/2;

            closure = tau*Hi*d_u*H_gamma*e_u' + sigma*Hi*e_u*H_gamma*d_u';
            penalty = -tau*Hi*d_u*H_gamma*Iv2u.good*e_v' ...
                      -sigma*Hi*e_u*H_gamma*Iv2u.bad*d_v';

        end

        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
        function [j, nj] = get_boundary_number(obj, boundary)

            switch boundary
                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
                    j = 1;
                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
                    j = 2;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','W','west','West','s','S','south','South'}
                    nj = -1;
                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
                    nj = 1;
            end
        end

        % Returns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e, d, H_b] = get_boundary_ops(obj, boundary)

            switch boundary
                case 'w'
                    e = obj.e_w;
                    d = obj.d_w;
                    H_b = obj.H_boundary{1};
                case 'e'
                    e = obj.e_e;
                    d = obj.d_e;
                    H_b = obj.H_boundary{1};
                case 's'
                    e = obj.e_s;
                    d = obj.d_s;
                    H_b = obj.H_boundary{2};
                case 'n'
                    e = obj.e_n;
                    d = obj.d_n;
                    H_b = obj.H_boundary{2};
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end
    end
end