view +scheme/Heat2dVariable.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 21394c78c72e
children 78db023a7fe3
line wrap: on
line source

classdef Heat2dVariable < scheme.Scheme

% Discretizes the Laplacian with variable coefficent,
% In the Heat equation way (i.e., the discretization matrix is not necessarily 
% symmetric)
% u_t = div * (kappa * grad u ) 
% opSet should be cell array of opSets, one per dimension. This
% is useful if we have periodic BC in one direction.

    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid
        dim

        order % Order of accuracy for the approximation

        % Diagonal matrix for variable coefficients
        KAPPA % Variable coefficient

        D % Total operator
        D1 % First derivatives

        % Second derivatives
        D2_kappa

        H, Hi % Inner products
        e_l, e_r
        d1_l, d1_r % Normal derivatives at the boundary
        alpha % Vector of borrowing constants
        
        H_boundary % Boundary inner products

    end

    methods

        function obj = Heat2dVariable(g ,order, kappa_fun, opSet)
            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
            default_arg('kappa_fun', @(x,y) 0*x+1);
            dim = 2;

            assert(isa(g, 'grid.Cartesian'))

            kappa = grid.evalOn(g, kappa_fun);
            m = g.size();
            m_tot = g.N();

            h = g.scaling();
            lim = g.lim;

            % 1D operators
            ops = cell(dim,1);
            for i = 1:dim
                ops{i} = opSet{i}(m(i), lim{i}, order);
            end

            I = cell(dim,1);
            D1 = cell(dim,1);
            D2 = cell(dim,1);
            H = cell(dim,1);
            Hi = cell(dim,1);
            e_l = cell(dim,1);
            e_r = cell(dim,1);
            d1_l = cell(dim,1);
            d1_r = cell(dim,1);

            for i = 1:dim
                I{i} = speye(m(i));
                D1{i} = ops{i}.D1;
                D2{i} = ops{i}.D2;
                H{i} =  ops{i}.H;
                Hi{i} = ops{i}.HI;
                e_l{i} = ops{i}.e_l;
                e_r{i} = ops{i}.e_r;
                d1_l{i} = ops{i}.d1_l;
                d1_r{i} = ops{i}.d1_r;
            end

            %====== Assemble full operators ========
            KAPPA = spdiag(kappa);
            obj.KAPPA = KAPPA;

            obj.D1 = cell(dim,1);
            obj.D2_kappa = cell(dim,1);
            obj.e_l = cell(dim,1);
            obj.e_r = cell(dim,1);
            obj.d1_l = cell(dim,1);
            obj.d1_r = cell(dim,1);

            % D1
            obj.D1{1} = kron(D1{1},I{2});
            obj.D1{2} = kron(I{1},D1{2});

            % Boundary operators
            obj.e_l{1} = kron(e_l{1},I{2});
            obj.e_l{2} = kron(I{1},e_l{2});
            obj.e_r{1} = kron(e_r{1},I{2});
            obj.e_r{2} = kron(I{1},e_r{2});

            obj.d1_l{1} = kron(d1_l{1},I{2});
            obj.d1_l{2} = kron(I{1},d1_l{2});
            obj.d1_r{1} = kron(d1_r{1},I{2});
            obj.d1_r{2} = kron(I{1},d1_r{2});

            % D2
            for i = 1:dim
                obj.D2_kappa{i} = sparse(m_tot);
            end
            ind = grid.funcToMatrix(g, 1:m_tot);

            for i = 1:m(2)
                D_kappa = D2{1}(kappa(ind(:,i)));
                p = ind(:,i);
                obj.D2_kappa{1}(p,p) = D_kappa;
            end

            for i = 1:m(1)
                D_kappa = D2{2}(kappa(ind(i,:)));
                p = ind(i,:);
                obj.D2_kappa{2}(p,p) = D_kappa;
            end

            % Quadratures
            obj.H = kron(H{1},H{2});
            obj.Hi = inv(obj.H);
            obj.H_boundary = cell(dim,1);
            obj.H_boundary{1} = H{2};
            obj.H_boundary{2} = H{1};

            % Differentiation matrix D (without SAT)
            D2_kappa = obj.D2_kappa;
            D1 = obj.D1;
            D = sparse(m_tot,m_tot);
            for i = 1:dim
                D = D + D2_kappa{i};
            end
            obj.D = D;
            %=========================================%

            % Misc.
            obj.m = m;
            obj.h = h;
            obj.order = order;
            obj.grid = g;
            obj.dim = dim;
            obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1];

        end


        % Closure functions return the operators applied to the own domain to close the boundary
        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning)
            default_arg('type','Neumann');
            default_arg('symmetric', false);
            default_arg('tuning',1.2);

            % j is the coordinate direction of the boundary
            % nj: outward unit normal component. 
            % nj = -1 for west, south, bottom boundaries
            % nj = 1  for east, north, top boundaries
            [j, nj] = obj.get_boundary_number(boundary);
            switch nj
            case 1
                e = obj.e_r;
                d = obj.d1_r;
            case -1
                e = obj.e_l;
                d = obj.d1_l;
            end

            Hi = obj.Hi;
            H_gamma = obj.H_boundary{j};
            KAPPA = obj.KAPPA;
            kappa_gamma = e{j}'*KAPPA*e{j}; 
            h = obj.h(j);
            alpha = h*obj.alpha(j);

            switch type

            % Dirichlet boundary condition
            case {'D','d','dirichlet','Dirichlet'}

                if ~symmetric
                    closure = -nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' ); 
                    penalty =  nj*Hi*d{j}*kappa_gamma*H_gamma;
                else
                    closure = nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' )...
                              -tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma*(e{j}' ) ; 
                    penalty =  -nj*Hi*d{j}*kappa_gamma*H_gamma ...
                              +tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma;
                end

            % Free boundary condition
            case {'N','n','neumann','Neumann'}
                    closure = -nj*Hi*e{j}*kappa_gamma*H_gamma*(d{j}' ); 
                    penalty =  Hi*e{j}*kappa_gamma*H_gamma; 
                    % penalty is for normal derivative and not for derivative, hence the sign.

            % Unknown boundary condition
            otherwise
                error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            error('Interface not implemented');
        end

        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
        function [j, nj] = get_boundary_number(obj, boundary)

            switch boundary
                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
                    j = 1;
                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
                    j = 2;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','W','west','West','s','S','south','South'}
                    nj = -1;
                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
                    nj = 1;
            end
        end

        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
        function [return_op] = get_boundary_operator(obj, op, boundary)

            switch boundary
                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
                    j = 1;
                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
                    j = 2;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch op
                case 'e'
                    switch boundary
                        case {'w','W','west','West','s','S','south','South'}
                            return_op = obj.e_l{j};
                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
                            return_op = obj.e_r{j};
                    end
                case 'd'
                    switch boundary
                        case {'w','W','west','West','s','S','south','South'}
                            return_op = obj.d1_l{j};
                        case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
                            return_op = obj.d1_r{j};
                    end
                otherwise
                    error(['No such operator: operatr = ' op]);
            end

        end

        function N = size(obj)
            N = prod(obj.m);
        end
    end
end