view +scheme/Euler1d.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents a35ed1d124d3
children 2b1b944deae1
line wrap: on
line source

classdef Euler1d < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        N % Number of points total
        h % Grid spacing
        u % Grid values
        x % Values of x and y for each
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        gamma

        H % Discrete norm
        Hi
        e_l, e_r, e_L, e_R;

    end

    properties (Constant)
        SUBSONIC_INFLOW = 1;
        SUBSONIC_OUTFLOW = -1;
        NO_FLOW = 0;
        SUPERSONIC_INFLOW = 2;
        SUPERSONIC_OUTFLOW = -2;
    end

    methods
        function obj = Euler1d(m,xlim,order,gama,opsGen,do_upwind)
            default_arg('opsGen',@sbp.D2Standard);
            default_arg('gama', 1.4);
            default_arg('do_upwind', false);
            gamma = gama;

            [x, h] = util.get_grid(xlim{:},m);

            if do_upwind
                ops = sbp.D1Upwind(m,xlim,order);
                Dp = ops.Dp;
                Dm = ops.Dm;

                D1 = (Dp + Dm)/2;
                Ddisp = (Dp - Dm)/2;
            else
                ops = opsGen(m,xlim,order);
                printExpr('issparse(ops.D1)');
                D1 = ops.D1;
            end

            H =  sparse(ops.H);
            Hi = sparse(ops.HI);
            e_l = sparse(ops.e_l);
            e_r = sparse(ops.e_r);

            I_x = speye(m);
            I_3 = speye(3);

            D1 = kr(D1, I_3);
            if do_upwind
                Ddisp = kr(Ddisp,I_3);
            end

            % Norms
            obj.H = kr(H,I_3);
            obj.Hi = kr(Hi,I_3);

            % Boundary operators
            obj.e_l  = e_l;
            obj.e_r  = e_r;
            obj.e_L  = kr(e_l,I_3);
            obj.e_R  = kr(e_r,I_3);

            obj.m = m;
            obj.h = h;
            obj.order = order;

            % Man har Q_t+F_x=0 i 1D Euler, där
            % q=[rho, rho*u, e]^T
            % F=[rho*u, rho*u^2+p, (e+p)*u] ^T
            % p=(gamma-1)*(e-rho*u^2/2);


            %Solving on form q_t + F_x = 0

            function o = Fx(q)
                Q = reshape(q,3,m);
                o = reshape(obj.F(Q),3*m,1);
                o = D1*o;
            end

            function o = Fx_disp(q)
                Q = reshape(q,3,m);
                f = reshape(obj.F(Q),3*m,1);

                c = obj.c(Q);
                lambda_max = c+abs(Q(2,:)./Q(1,:));
                % lambda_max = max(lambda_max);

                lamb_Q(1,:) = lambda_max.*Q(1,:);
                lamb_Q(2,:) = lambda_max.*Q(2,:);
                lamb_Q(3,:) = lambda_max.*Q(3,:);

                lamb_q = reshape(lamb_Q,3*m, 1);

                o = -D1*f + Ddisp*lamb_q;
            end

            if do_upwind
                obj.D = @Fx_disp;
            else
                obj.D = @(q)-Fx(q);
            end

            obj.u = x;
            obj.x = kr(x,ones(3,1));
            obj.gamma = gamma;
        end

        % Flux function
        function o = F(obj, Q)
            % Flux: f = [q2; q2.^2/q1 + p(q); (q3+p(q))*q2/q1];
            p = obj.p(Q);
            o = [Q(2,:); Q(2,:).^2./Q(1,:) + p; (Q(3,:)+p).*Q(2,:)./Q(1,:)];
        end

        % Equation of state
        function o = p(obj, Q)
            % Pressure p = (gamma-1)*(q3-q2.^2/q1/2)
            o = (obj.gamma-1)*( Q(3,:)-1/2*Q(2,:).^2./Q(1,:) );
        end

        % Speed of sound
        function o = c(obj, Q)
            % Speed of light c = sqrt(obj.gamma*p/rho);
            o = sqrt(obj.gamma*obj.p(Q)./Q(1,:));
        end

        % Eigen value matrix
        function o = Lambda(obj, q)
            u = q(2)/q(1);
            c = obj.c(q);
            L = [u, u+c, u-c];
            o = diag(L);
        end

        % Diagonalization transformation
        function o = T(obj, q)
            % T is the transformation such that A = T*Lambda*inv(T)
            % where Lambda=diag(u, u+c, u-c)
            rho = q(1);
            u = q(2)/q(1);
            e = q(3);
            gamma = obj.gamma;

            c = sqrt(gamma*obj.p(q)/rho);

            sqrt2gamm = sqrt(2*(gamma-1));

            o = [
                 sqrt2gamm*rho      , rho                               , rho                               ;
                 sqrt2gamm*rho*u    , rho*(u+c)                         , rho*(u-c)                         ;
                 sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c ;
            ];
            % Devide columns by stuff to get rid of extra comp?
        end

        function fs = flowStateL(obj, q)
            q_l = obj.e_L'*q;
            c = obj.c(q_l);
            v = q_l(2,:)/q_l(1,:);

            if v > c
                fs = scheme.Euler1d.SUPERSONIC_INFLOW;
            elseif v > 0
                fs = scheme.Euler1d.SUBSONIC_INFLOW;
            elseif v > -c
                fs = scheme.Euler1d.SUBSONIC_OUTFLOW;
            else
                fs = scheme.Euler1d.SUPERSONIC_OUTFLOW;
            end
        end

        % returns positiv values for inlfow, negative for outflow.
        %  +-1 for subsonic
        function fs = flowStateR(obj, q)
            q_r = obj.e_R'*q;
            c = obj.c(q_r);
            v = q_r(2,:)/q_r(1,:);

            if v < -c
                fs = scheme.Euler1d.SUPERSONIC_INFLOW;
            elseif v < 0
                fs = scheme.Euler1d.SUBSONIC_INFLOW;
            elseif v < c
                fs = scheme.Euler1d.SUBSONIC_OUTFLOW;
            else
                fs = scheme.Euler1d.SUPERSONIC_OUTFLOW;
            end
        end

        % Enforces the boundary conditions
        %  w+ = R*w- + g(t)
        function closure = boundary_condition(obj,boundary, type, varargin)
            [e_s,e_S,s] = obj.get_boundary_ops(boundary);

            % Boundary condition on form
            %   w_in = R*w_out + g,       where g is data

            switch type
                case 'wall'
                    closure = obj.boundary_condition_wall(boundary);
                case 'inflow'
                    closure = obj.boundary_condition_inflow(boundary,varargin{:});
                case 'outflow'
                    closure = obj.boundary_condition_outflow(boundary,varargin{:});
                case 'inflow_rho'
                    closure = obj.boundary_condition_inflow_rho(boundary,varargin{:});
                case 'outflow_rho'
                    closure = obj.boundary_condition_outflow_rho(boundary,varargin{:});
                case 'char'
                    closure = obj.boundary_condition_char(boundary,varargin{:});
                otherwise
                    error('Unsupported bc type: %s', type);
            end

        end


        % Sets the boundary condition Lq = g, where
        %   L = L(rho, u, e)
        %   p_in are the indecies of the ingoing characteristics.
        %
        % Returns closure(q,g)
        function closure = boundary_condition_L(obj, boundary, L_fun, p_in)
            [e_s,e_S,s] = obj.get_boundary_ops(boundary);

            p_ot = 1:3;
            p_ot(p_in) = [];

            p = [p_in, p_ot]; % Permutation to sort
            pt(p) = 1:length(p); % Inverse permutation

            function o = closure_fun(q,g)
                % Extract solution at the boundary
                q_s = e_S'*q;
                rho = q_s(1);
                u = q_s(2)/rho;
                e = q_s(3);

                c = obj.c(q_s);

                % Calculate transformation matrix
                T = obj.T(q_s);
                Tin = T(:,p_in);
                Tot = T(:,p_ot);

                % Calculate eigen value matrix
                Lambda = obj.Lambda(q_s);

                % Setup the penalty parameter
                tau1 = -2*abs(Lambda(p_in,p_in));
                tau2 = zeros(length(p_ot),length(p_in)); % Penalty only on ingoing char.

                tauHat = [tau1; tau2];
                tau = e_S*sparse(T*tauHat(pt,:));

                L = L_fun(rho,u,e);

                o = 1/2*obj.Hi * tau * inv(L*Tin)*(L*q_s - g);
            end
            closure = @closure_fun;
        end

        % Return closure(q,g)
        function closure = boundary_condition_char(obj,boundary)
            [e_s,e_S,s] = obj.get_boundary_ops(boundary);

            function o = closure_fun(q, w_data)
                q_s = e_S'*q;
                rho = q_s(1);
                u = q_s(2)/rho;
                e = q_s(3);

                c = obj.c(q_s);

                Lambda = [u, u+c, u-c];

                p_in = find(s*Lambda < 0);
                p_ot = 1:3;
                p_ot(p_in) = [];
                p = [p_in p_ot];
                pt(p) = 1:length(p);

                T = obj.T(q_s);

                tau1 = -2*diag(abs(Lambda(p_in)));
                tau2 = zeros(length(p_ot),length(p_in)); % Penalty only on ingoing char.

                tauHat = [tau1; tau2];

                tau = -s*e_S*sparse(T*tauHat(pt,:));

                w_s = inv(T)*q_s;
                w_in = w_s(p_in);

                w_in_data = w_data(p_in);

                o = 1/2*obj.Hi * tau * (w_in - w_in_data);
            end

            closure = @closure_fun;
        end


        % Return closure(q,[v; p])
        function closure = boundary_condition_inflow(obj, boundary)
            [~,~,s] = obj.get_boundary_ops(boundary);

             switch s
                case -1
                    p_in = [1 2];
                case 1
                    p_in = [1 3];
            end

            a = obj.gamma - 1;
            L = @(rho,u,~)[
                0    1/rho 0;  %v
                0 -1/2*u*a a;  %p
            ];

            closure_raw = boundary_condition_L(obj, boundary, L, g, p_in);
            closure = @(q,p,v) closure_raw(q,[v; p]);
        end

        % Return closure(q, p)
        function closure = boundary_condition_outflow(obj, boundary)
            [~,~,s] = obj.get_boundary_ops(boundary);

             switch s
                case -1
                    p_in = 2;
                case 1
                    p_in = 3;
            end

            a = obj.gamma -1;
            L = @(~,u,~)a*[0 -1/2*u 1];

            closure = boundary_condition_L(obj, boundary, L, p_in);
        end

        % Return closure(q,[v; rho])
        function closure = boundary_condition_inflow_rho(obj, boundary)
            [~,~,s] = obj.get_boundary_ops(boundary);

             switch s
                case -1
                    p_in = [1 2];
                case 1
                    p_in = [1 3];
            end

            a = obj.gamma - 1;
            L = @(rho,~,~)[
                0  1/rho 0;
                1      0 0;
            ];

            closure = boundary_condition_L(obj, boundary, L, p_in);
        end

        % Return closure(q,rho)
        function closure = boundary_condition_outflow_rho(obj, boundary)
            [~,~,s] = obj.get_boundary_ops(boundary);

             switch s
                case -1
                    p_in = 2;
                case 1
                    p_in = 3;
            end

            L = @(~,~,~)[1 0 0];

            closure = boundary_condition_L(obj, boundary, L, p_in);
        end

        % Set wall boundary condition v = 0.
        function closure = boundary_condition_wall(obj,boundary)
            [e_s,e_S,s] = obj.get_boundary_ops(boundary);

            % Vill vi sätta penalty på karateristikan som är nära noll också eller vill
            % vi låta den vara fri?


            switch s
                case -1
                    p_in = 2;
                    p_zero = 1;
                    p_ot = 3;
                case 1
                    p_in = 3;
                    p_zero = 1;
                    p_ot = 2;
                otherwise
                    error();
            end

            p = [p_in, p_zero, p_ot]; % Permutation to sort
            pt(p) = 1:length(p); % Inverse permutation

            function o = closure_fun(q)

                q_s = e_S'*q;
                rho = q_s(1);
                u = q_s(2)/rho;
                c = obj.c(q_s);

                T = obj.T(q_s);
                R = -(u-c)/(u+c);
                % l = [u, u+c, u-c];

                % p_in = find(s*l <= 0);
                % p_ot = find(s*l >  0);


                tau1 = -2*c;
                tau2 = [0; 0]; % Penalty only on ingoing char.

                % Lambda_in = diag(abs(l(p_in)));
                % Lambda_ot = diag(abs(l(p_ot)));

                tauHat = [tau1; tau2];
                tau = -s*e_S*sparse(T*tauHat(pt));

                w_s = inv(T)*q_s;
                % w_s = T\q_s;
                % w_s = Tinv * q_s; % Med analytisk matris
                w_in = w_s(p_in);
                w_ot = w_s(p_ot);

                o = 1/2*obj.Hi * tau * (w_in - R*w_ot);
            end

            closure = @closure_fun;
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            error('NOT DONE')
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
            [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            tuning = 2;

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
            % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning;
            tau4 = s_u*alpha_u/2;

            sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
            sig3 = -s_u*alpha_u/2;

            phi2 = s_u*1/2;

            psi1 = -s_u*1/2;

            tau = tau1*e_u  +                     tau4*d3_u;
            sig =           sig2*d1_u + sig3*d2_u          ;
            phi =           phi2*d1_u                      ;
            psi = psi1*e_u                                 ;

            closure =  halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
            penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,E,s] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'l'
                    e  = obj.e_l;
                    E  = obj.e_L;
                    s = -1;
                case 'r'
                    e  = obj.e_r;
                    E  = obj.e_R;
                    s = 1;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end

    end
end