Mercurial > repos > public > sbplib
view +sbp/D1Gauss.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | e1d11b6a68d8 |
children |
line wrap: on
line source
classdef D1Gauss < sbp.OpSet % Diagonal-norm SBP operators based on the Gauss quadrature formula % with m nodes, which is of degree 2m-1. Hence, The operator D1 is % accurate of order m. properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Gauss(m,lim) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch m case 4 [obj.D1,obj.H,obj.x,obj.h,obj.e_l,obj.e_r] = ... sbp.implementations.d1_gauss_4(L); otherwise error('Invalid number of points: %d.', m); end obj.x = obj.x + x_l; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; obj.borrowing = []; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end