Mercurial > repos > public > sbplib
view +sbp/+implementations/d4_lonely_4_min_boundary_points.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | b19e142fcae1 |
children |
line wrap: on
line source
function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_4_min_boundary_points(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 4:de ordn. SBP Finita differens %%% %%% operatorer framtagna av Mark Carpenter %%% %%% %%% %%% H (Normen) %%% %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% %%% D2 (approx andra derivatan) %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %H?r med endast 4 randpunkter BP = 4; if(m<2*BP) error(['Operator requires at least ' num2str(2*BP) ' grid points']); end % Norm Hv = ones(m,1); Hv(1:4) = [17/48 59/48 43/48 49/48]; Hv(m-3:m) = rot90(Hv(1:4),2); Hv = h*Hv; H = spdiag(Hv, 0); HI = spdiag(1./Hv, 0); % Boundary operators e_l = sparse(m,1); e_l(1) = 1; e_r = rot90(e_l, 2); d1_l = sparse(m,1); d1_l(1:4) = 1/h*[-11/6 3 -3/2 1/3]; d1_r = -rot90(d1_l, 2); d2_l = sparse(m,1); d2_l(1:4) = 1/h^2*[2 -5 4 -1]; d2_r = rot90(d2_l, 2); d3_l = sparse(m,1); d3_l(1:4) = 1/h^3*[-1 3 -3 1]; d3_r = -rot90(d3_l, 2); % First derivative stencil = [1/12 -2/3 0 2/3 -1/12]; diags = [-1 0 1]; Q_U = [ 0 0.59e2/0.96e2 -0.1e1/0.12e2 -0.1e1/0.32e2; -0.59e2/0.96e2 0 0.59e2/0.96e2 0; 0.1e1/0.12e2 -0.59e2/0.96e2 0 0.59e2/0.96e2; 0.1e1/0.32e2 0 -0.59e2/0.96e2 0; ]; Q = stripeMatrix(stencil, diags, m); Q(1:4,1:4)=Q_U; Q(m-3:m,m-3:m) = -rot90(Q_U, 2); D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); % Fourth derivative stencil = [-1/6, 2, -13/2, 28/3, -13/2, 2, -1/6]; diags = -3:3; M4 = stripeMatrix(stencil, diags, m); M4_U=[ 0.8e1/0.3e1 -0.37e2/0.6e1 0.13e2/0.3e1 -0.5e1/0.6e1; -0.37e2/0.6e1 0.47e2/0.3e1 -13 0.11e2/0.3e1; 0.13e2/0.3e1 -13 0.44e2/0.3e1 -0.47e2/0.6e1; -0.5e1/0.6e1 0.11e2/0.3e1 -0.47e2/0.6e1 0.29e2/0.3e1; ]; M4(1:4,1:4) = M4_U; M4(m-3:m,m-3:m) = rot90(M4_U, 2); M4 = 1/h^3*M4; D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end