view +sbp/+implementations/d2_variable_2.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents ded4156e53e2
children b758d1cf4c8e
line wrap: on
line source

function [H, HI, D1, D2, e_l, e_r, d1_l, d1_r] = d2_variable_2(m,h)

    BP = 1;
    if(m<2*BP)
        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
    end

    % Norm
    Hv = ones(m,1);
    Hv(1) = 1/2;
    Hv(m:m) = 1/2;
    Hv = h*Hv;
    H = spdiag(Hv, 0);
    HI = spdiag(1./Hv, 0);


    % Boundary operators
    e_l = sparse(m,1);
    e_l(1) = 1;
    e_r = rot90(e_l, 2);

    d1_l = sparse(m,1);
    d1_l(1:3) = 1/h*[-3/2 2 -1/2];
    d1_r = -rot90(d1_l, 2);

    % D1 operator
    diags   = -1:1;
    stencil = [-1/2 0 1/2];
    D1 = stripeMatrix(stencil, diags, m);
    
    D1(1,1)=-1;D1(1,2)=1;D1(m,m-1)=-1;D1(m,m)=1;
    D1(m,m-1)=-1;D1(m,m)=1;
    D1=D1/h;
    %Q=H*D1 + 1/2*(e_1*e_1') - 1/2*(e_m*e_m');


    M=sparse(m,m);

    scheme_width = 3;
    scheme_radius = (scheme_width-1)/2;
    r = (1+scheme_radius):(m-scheme_radius);

    function D2 = D2_fun(c)

        Mm1 = -c(r-1)/2 - c(r)/2;
        M0  =  c(r-1)/2 + c(r)   + c(r+1)/2;
        Mp1 =            -c(r)/2 - c(r+1)/2;

        M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m);


        M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;];
        M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;];
        M=M/h;

        D2=HI*(-M-c(1)*e_l*d1_l'+c(m)*e_r*d1_r');
    end
    D2 = @D2_fun;
end