Mercurial > repos > public > sbplib
view +rv/constructDiffOps.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 44c3ea38097e |
children | 52f59d27b40f |
line wrap: on
line source
function [D_rv, D_flux, DvDt, solutionPenalties, residualPenalties] = constructDiffOps(scheme, g, order, schemeParams, opSet, BCs) %% DiffOps for solution vector [D, solutionPenalties] = constructTotalFluxDiffOp(scheme, g, order, schemeParams, opSet, BCs); D2 = constructSymmetricD2Operator(g, order, opSet); D_rv = @(v,viscosity)(D(v) + D2(v, viscosity)); %% DiffOps for residual viscosity [D_flux, residualPenalties] = constructTotalFluxDiffOp(scheme, g, max(order-2,2), schemeParams, opSet, BCs); % DiffOp for flux in residual viscosity. Due to sign conventions of the implemnted schemes, we need to % change the sign. D_flux = @(v) -D_flux(v); % DiffOp for time derivative in residual viscosity DvDt = D; end function [D, penalties] = constructTotalFluxDiffOp(scheme, g, order, schemeParams, opSet, BCs) diffOp = scheme(g, order, schemeParams{:}, opSet); [D, penalties] = addClosuresToDiffOp(diffOp, BCs); end function [D, penalties] = addClosuresToDiffOp(diffOp, BCs) if ~isa(diffOp.D, 'function_handle') D = @(v) diffOp.D*v else D = diffOp.D; end penalties = cell(size(BCs)); for i = 1:size(BCs,1) for j = 1:size(BCs,2) [closure, penalties{i,j}] = diffOp.boundary_condition(BCs{i,j}.boundary, BCs{i,j}.type); if ~isa(closure, 'function_handle') closure = @(v) closure*v; end D = @(v) D(v) + closure(v); end end end function D2 = constructSymmetricD2Operator(g, order, opSet) m = g.size(); ops = cell(g.D(),1); I = cell(g.D(),1); for i = 1:g.D() lim = {g.x{i}(1), g.x{i}(end)}; ops{i} = opSet(m(i), lim, order); I{i} = speye(m(i)); end % TBD: How is this generalized to a loop over dimensions or similar? switch g.D() case 1 e_r = ops{1}.e_r; e_l = ops{1}.e_l; Hi = ops{1}.HI; B = e_r*e_r' - e_l*e_l'; if isequal(opSet,@sbp.D1Upwind) Dm = ops{1}.Dm; Dp = ops{1}.Dp; D2 = @(viscosity) Dm*spdiag(viscosity)*Dp-Hi*(B*spdiag(viscosity)*Dp); else D2 = @(viscosity)ops{1}.D2(viscosity); end case 2 % TODO: % Currently only implemented for upwind operators. % Remove this part once the time-dependent D2 operator is implemented for other opSets % or if it is decided that it should only be supported for upwind operators. assert(isequal(opSet,@sbp.D1Upwind)) e_e = kron(ops{1}.e_r,I{2}); e_w = kron(ops{1}.e_l,I{2}); Dm_x = kron(ops{1}.Dm,I{2}); Dp_x = kron(ops{1}.Dp,I{2}); H_x = kron(ops{1}.HI,I{2}); B_x = e_e*e_e' - e_w*e_w'; D2_x = @(viscosity) Dm_x*spdiag(viscosity)*Dp_x-H_x*(B_x*spdiag(viscosity)*Dp_x); e_n = kron(I{1},ops{2}.e_r); e_s = kron(I{1},ops{2}.e_l); Dm_y = kron(I{1},ops{2}.Dm); Dp_y = kron(I{1},ops{2}.Dp); H_y = kron(I{1},ops{2}.HI); B_y = e_n*e_n' - e_s*e_s'; D2_y = @(viscosity) Dm_y*spdiag(viscosity)*Dp_y-H_y*(B_y*spdiag(viscosity)*Dp_y); D2 = @(viscosity)D2_x(viscosity) + D2_y(viscosity); otherwise error('3D not yet implemented') end D2 = @(v, viscosity) D2(viscosity)*v; end