Mercurial > repos > public > sbplib
view +parametrization/old/triang_plot_interp.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 3a3cf386bb7e |
children |
line wrap: on
line source
% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes. % Plots a interp of a triangle where one the interpolation is from a square % with one side collapsed to function h = triang_plot_interp_kindaworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; m = 20; Xl_curves = cell(n,1); Xr_curves = cell(n,1); Y_curves = cell(n,1); function u = wierdness(v,d,N) if N == 0 u = 0; else u = N*d./(1-v); end end %Y curves t = linspace(0,1,m); for i = 1:n x = []; y = []; for j = 1:length(t) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end % Right and left X curves t = linspace(0,1,m); d = u(2); for i = 1:n xl = []; yl = []; xr = []; yr = []; N = i-1; t = linspace(0,1-N*d,m); for j = 1:length(t) w = wierdness(t(j),d,N); [xr(j),yr(j)] = S(w,t(j)); [xl(j),yl(j)] = S(1-w,t(j)); end Xl_curves{i} = [xl', yl']; Xr_curves{i} = [xr', yr']; end for i = 1:n-1 line(Xl_curves{i}(:,1),Xl_curves{i}(:,2)) line(Xr_curves{i}(:,1),Xr_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) end end function h = triang_plot_interp_nonworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; X_curves = cell(n-1,1); Y_curves = cell(n-1,1); K_curves = cell(n-1,1); t = linspace(0,1,m); for i = 1:n-1 x = []; y = []; for j = find(t+u(i) <= 1) [x(j),y(j)] = S(u(i),t(j)); end X_curves{i} = [x', y']; end for i = 1:n-1 x = []; y = []; for j = find(t+v(i) <= 1) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end for i = 2:n x = []; y = []; for j = find(t<u(i)) [x(j),y(j)] = S(t(j), u(i)-t(j)); end K_curves{i-1} = [x', y']; end for i = 1:n-1 line(X_curves{i}(:,1),X_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) line(K_curves{i}(:,1),K_curves{i}(:,2)) end h = -1; % h = plot(X_curves{:},Y_curves{:},K_curves{:}); end