view +parametrization/old/triang_interp.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 81e0ead29431
children
line wrap: on
line source

classdef triang_interp
    properties
        g1, g2 ,g3  % Curves encirling the tirangle in the positive direction.
        A,B,C  % The corners of the triangle
        Sa, Sb, Sc % Mappings from square with different sides collapsed
    end

    methods
        function o = triang_interp(g1,g2,g3)
            o.g1 = g1;
            o.g2 = g2;
            o.g3 = g3;
            o.A = g1(0);
            o.B = g2(0);
            o.C = g3(0);
            o.Sa = parametrization.triang_interp.square_to_triangle_interp(g2,g3,g1);
            o.Sb = parametrization.triang_interp.square_to_triangle_interp(g3,g1,g2);
            o.Sc = parametrization.triang_interp.square_to_triangle_interp(g1,g2,g3);
        end


        function show(o,N)
            % Show the mapped meridians of the triangle.
            % Might be used for the barycentric coordinates.
            ma = @(t)o.Sa(1/2,1-t);
            mb = @(t)o.Sb(1/2,1-t);
            mc = @(t)o.Sc(1/2,1-t);

            na = @(t)o.Sa(t,1/2);

            ka = @(t)(o.g1(1-t)+o.g2(t))/2;

            h = parametrization.plot_curve(ma);
            h.Color = Color.blue;
            h = parametrization.plot_curve(mb);
            h.Color = Color.blue;
            h = parametrization.plot_curve(mc);
            h.Color = Color.blue;

            h = parametrization.plot_curve(na);
            h.Color = Color.red;

            h = parametrization.plot_curve(ka);
            h.Color = Color.red;

            [a(1),a(2)] = ma(1/3);
            [b(1),b(2)] = mb(1/3);
            [c(1),c(2)] = mc(1/3);

            d = ka(1-1/3);


            parametrization.label_pt(a,b,c,d);


            % t = linspace(0,1,N);
            % for i = 1:N
            %     sa = @(s)o.Sa(s,t(i));
            %     sb = @(s)o.Sb(s,t(i));
            %     sc = @(s)o.Sc(s,t(i));

            %     h = parametrization.plot_curve(sa);
            %     h.Color = Color.blue;
            %     h = parametrization.plot_curve(sb);
            %     h.Color = Color.blue;
            %     h = parametrization.plot_curve(sc);
            %     h.Color = Color.blue;
            % end

            h = parametrization.plot_curve(o.g1);
            h.LineWidth = 2;
            h.Color = Color.red;

            h = parametrization.plot_curve(o.g2);
            h.LineWidth = 2;
            h.Color = Color.red;

            h = parametrization.plot_curve(o.g3);
            h.LineWidth = 2;
            h.Color = Color.red;

        end


    end

    methods(Static)
        % Makes a mapping from the unit square to a triangle by collapsing
        % one of the sides of the squares to a corner on the triangle
        % The collapsed side is mapped to the corner oposite to g1.
        % This is done such that for S(s,t), S(s,1) = g1(s)
        function S = square_to_triangle_interp(g1,g2,g3)
            corner = parametrization.line_segment(g3(0),g3(0));
            S = parametrization.transfinite_interp(corner,g3,f(g1),f(g2))

            % Function to flip a curve
            function h = f(g)
                h = @(t)g(1-t);
            end
        end
    end

end

% % Return a mapping from u.v to x,y of the domain encircled by g1 g2 g3 in the the positive direction. created be using transfinite interpolation.
% function S = triang_interp(g1,g2,g3)
%     A = g1(0)
%     B = g2(0)
%     C = g3(0)

%     function [x,y] = S_fun(u,v)
%         w = sqrt((u-1)^2+v^2)/sqrt(2); % Parameter for g3
%         v = v*(1-u-v)*g1(u) + u*(1-u-v)*g2(v) + u*v*g3(w) ...
%             +(1-u)*(1-v)*A+u*(1-v)*B + (1-u)*v*C;
%         x = v(1);
%         y = v(2);
%     end
%     S = @S_fun;
% end



% function subsref(obj,S)
%       if ~all(isnumeric(S.subs{:}))
%         error('Only supports calling object with number')
%       end
%       if numel(S.subs{:}) > 1
%         disp('You''ve called the object with more than one argument');
%       else
%         disp(['You called the object with argument = ',num2str(S.subs{:})]);
%       end
%     end