Mercurial > repos > public > sbplib
view +parametrization/Ti3D.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | eef74cd9b49c |
children |
line wrap: on
line source
classdef Ti3D properties gs % {6}Surfaces V % FunctionHandle(XI,ETA,ZETA) end methods % TODO write all fancy features for flipping around with the surfaces % Each surface is defined with an outward facing outward and choosing % the "corner" where XI=0 if not possible the corner where ETA=0 is choosen function obj = Ti3D(CW,CE,CS,CN,CB,CT) obj.gs = {CE,CW,CS,CN,CB,CT}; gw = CW.g; ge = CE.g; gs = CS.g; gn = CN.g; gb = CB.g; gt = CT.g; function o = V_fun(XI,ETA,ZETA) XI=XI'; ETA=ETA'; ZETA=ZETA'; one=0*ETA+1; zero=0*ETA; Sw = gw(ETA,(1-ZETA)); Se = ge((1-ETA),(1-ZETA)); Ss = gs(XI,ZETA); Sn = gn((1-XI),(1-ZETA)); Sb = gb((1-XI),ETA); St = gt(XI,ETA); Ewt = gw(ETA,zero); Ewb = gw(ETA,one); Ews = gw(zero,1-ZETA); Ewn = gw(one,1-ZETA); Eet = ge(1-ETA,zero); Eeb = ge(1-ETA,one); Ees = ge(one,1-ZETA); Een = ge(zero,1-ZETA); Enb = gn(1-XI,one); Ent = gn(1-XI,zero); Est = gs(XI,one); Esb = gs(XI,zero); Cwbs = gw(zero,one); Cwbn = gw(one,one); Cwts = gw(zero,zero); Cwtn = gw(one,zero); Cebs = ge(one,one); Cebn = ge(zero,one); Cets = ge(one,zero); Cetn = ge(zero,zero); X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:); X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:); X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:); X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:); X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:); X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:); X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:); X = X1 + X2 + X3 - X12 - X13 - X23 + X123; Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:); Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:); Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:); Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:); Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:); Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:); Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:); Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123; Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:); Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:); Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:); Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:); Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:); Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:); Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:); Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123; o = [X;Y;Z]; end obj.V = @V_fun; end %Should be rewritten so that the input is xi eta zeta function [X,Y,Z] = map(obj,XI,ETA,ZETA) V = obj.V; p = V(XI,ETA,ZETA); X = p(1,:)'; Y = p(2,:)'; Z = p(3,:)'; end % function h = plot(obj,nu,nv) % S = obj.S; % % default_arg('nv',nu) % % u = linspace(0,1,nu); % v = linspace(0,1,nv); % % m = 100; % % X = zeros(nu+nv,m); % Y = zeros(nu+nv,m); % % % t = linspace(0,1,m); % for i = 1:nu % p = S(u(i),t); % X(i,:) = p(1,:); % Y(i,:) = p(2,:); % end % % for i = 1:nv % p = S(t,v(i)); % X(i+nu,:) = p(1,:); % Y(i+nu,:) = p(2,:); % end % % h = line(X',Y'); % end % % % function h = show(obj,nu,nv) % default_arg('nv',nu) % S = obj.S; % % if(nu>2 || nv>2) % h_grid = obj.plot(nu,nv); % set(h_grid,'Color',[0 0.4470 0.7410]); % end % % h_bord = obj.plot(2,2); % set(h_bord,'Color',[0.8500 0.3250 0.0980]); % set(h_bord,'LineWidth',2); % end % % % % TRANSFORMATIONS % function ti = translate(obj,a) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.translate(a); % end % % ti = grid.Ti(new_gs{:}); % end % % % Mirrors the Ti so that the resulting Ti is still left handed. % % (Corrected by reversing curves and switching e and w) % function ti = mirror(obj, a, b) % gs = obj.gs; % % new_gs = cell(1,4); % % new_gs{1} = gs{1}.mirror(a,b).reverse(); % new_gs{3} = gs{3}.mirror(a,b).reverse(); % new_gs{2} = gs{4}.mirror(a,b).reverse(); % new_gs{4} = gs{2}.mirror(a,b).reverse(); % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate(obj,a,rad) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.rotate(a,rad); % end % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate_edges(obj,n); % new_gs = cell(1,4); % for i = 0:3 % new_i = mod(i - n,4); % new_gs{new_i+1} = obj.gs{i+1}; % end % ti = grid.Ti(new_gs{:}); % end % end % % methods(Static) % function obj = points(p1, p2, p3, p4) % g1 = grid.Curve.line(p1,p2); % g2 = grid.Curve.line(p2,p3); % g3 = grid.Curve.line(p3,p4); % g4 = grid.Curve.line(p4,p1); % % obj = grid.Ti(g1,g2,g3,g4); % end % % function label(varargin) % if nargin == 2 && ischar(varargin{2}) % label_impl(varargin{:}); % else % for i = 1:length(varargin) % label_impl(varargin{i},inputname(i)); % end % end % % % function label_impl(ti,str) % S = ti.S; % % pc = S(0.5,0.5); % % margin = 0.1; % pw = S( margin, 0.5); % pe = S(1-margin, 0.5); % ps = S( 0.5, margin); % pn = S( 0.5, 1-margin); % % % ti.show(2,2); % grid.place_label(pc,str); % grid.place_label(pw,'w'); % grid.place_label(pe,'e'); % grid.place_label(ps,'s'); % grid.place_label(pn,'n'); % end % end end end