view +parametrization/Ti.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents edb1d60b0b77
children
line wrap: on
line source

classdef Ti
    properties
        gs % {4}Curve
        S  % FunctionHandle(u,v)
    end

    methods
        % TODO function to label boundary names.
        %  function to find largest and smallest delta h in the grid. Maybe shouldnt live here
        function obj = Ti(C1,C2,C3,C4)
            obj.gs = {C1,C2,C3,C4};

            g1 = C1.g;
            g2 = C2.g;
            g3 = C3.g;
            g4 = C4.g;

            A = g1(0);
            B = g2(0);
            C = g3(0);
            D = g4(0);

            function o = S_fun(u,v)
                if isrow(u) && isrow(v)
                    flipped = false;
                else
                    flipped = true;
                    u = u';
                    v = v';
                end

                x1 = g1(u);
                x2 = g2(v);
                x3 = g3(1-u);
                x4 = g4(1-v);

                o1 = (1-v).*x1(1,:) + u.*x2(1,:) + v.*x3(1,:) + (1-u).*x4(1,:) ...
                    -((1-u).*(1-v).*A(1,:) + u.*(1-v).*B(1,:) + u.*v.*C(1,:) + (1-u).*v.*D(1,:));
                o2 = (1-v).*x1(2,:) + u.*x2(2,:) + v.*x3(2,:) + (1-u).*x4(2,:) ...
                    -((1-u).*(1-v).*A(2,:) + u.*(1-v).*B(2,:) + u.*v.*C(2,:) + (1-u).*v.*D(2,:));

                if ~flipped
                    o = [o1;o2];
                else
                    o = [o1'; o2'];
                end
            end

            obj.S = @S_fun;
        end

        % Does this funciton make sense?
        % Should it always be eval?
        function [X,Y] = map(obj,u,v)
            default_arg('v',u);

            if isscalar(u)
                u = linspace(0,1,u);
            end

            if isscalar(v)
                v = linspace(0,1,v);
            end

            S = obj.S;

            nu = length(u);
            nv = length(v);

            X = zeros(nv,nu);
            Y = zeros(nv,nu);

            u = rowVector(u);
            v = rowVector(v);

            for i = 1:nv
                p = S(u,v(i));
                X(i,:) = p(1,:);
                Y(i,:) = p(2,:);
            end
        end

        % Evaluate S for each pair of u and v,
        % Return same shape as u
        function [x, y] = eval(obj, u, v)
            x = zeros(size(u));
            y = zeros(size(u));

            for i = 1:numel(u)
                p = obj.S(u(i), v(i));
                x(i) = p(1,:);
                y(i) = p(2,:);
            end
        end

        function h = plot(obj,nu,nv)
            S = obj.S;

            default_arg('nv',nu)

            u = linspace(0,1,nu);
            v = linspace(0,1,nv);

            m = 100;

            X = zeros(nu+nv,m);
            Y = zeros(nu+nv,m);


            t = linspace(0,1,m);
            for i = 1:nu
                p = S(u(i),t);
                X(i,:) = p(1,:);
                Y(i,:) = p(2,:);
            end

            for i = 1:nv
                p = S(t,v(i));
                X(i+nu,:) = p(1,:);
                Y(i+nu,:) = p(2,:);
            end

            h = line(X',Y');
        end


        function h = show(obj,nu,nv)
            default_arg('nv',nu)
            S = obj.S;

            if(nu>2 || nv>2)
                h.grid = obj.plot(nu,nv);
                set(h.grid,'Color',[0 0.4470 0.7410]);
            end

            h.border = obj.plot(2,2);
            set(h.border,'Color',[0.8500 0.3250 0.0980]);
            set(h.border,'LineWidth',2);
        end


        % TRANSFORMATIONS
        function ti = translate(obj,a)
            gs = obj.gs;

            for i = 1:length(gs)
                new_gs{i} = gs{i}.translate(a);
            end

            ti = parametrization.Ti(new_gs{:});
        end

        % Mirrors the Ti so that the resulting Ti is still left handed.
        %  (Corrected by reversing curves and switching e and w)
        function ti = mirror(obj, a, b)
            gs = obj.gs;

            new_gs = cell(1,4);

            new_gs{1} = gs{1}.mirror(a,b).reverse();
            new_gs{3} = gs{3}.mirror(a,b).reverse();
            new_gs{2} = gs{4}.mirror(a,b).reverse();
            new_gs{4} = gs{2}.mirror(a,b).reverse();

            ti = parametrization.Ti(new_gs{:});
        end

        function ti = rotate(obj,a,rad)
            gs = obj.gs;

            for i = 1:length(gs)
                new_gs{i} = gs{i}.rotate(a,rad);
            end

            ti = parametrization.Ti(new_gs{:});
        end

        function ti = rotate_edges(obj,n);
            new_gs = cell(1,4);
            for i = 0:3
                new_i = mod(i - n,4);
                new_gs{new_i+1} = obj.gs{i+1};
            end
            ti = parametrization.Ti(new_gs{:});
        end
    end

    methods(Static)
        function obj = points(p1, p2, p3, p4)
            g1 = parametrization.Curve.line(p1,p2);
            g2 = parametrization.Curve.line(p2,p3);
            g3 = parametrization.Curve.line(p3,p4);
            g4 = parametrization.Curve.line(p4,p1);

            obj = parametrization.Ti(g1,g2,g3,g4);
        end

        function obj = rectangle(a, b)
            p1 = a;
            p2 = [b(1), a(2)];
            p3 = b;
            p4 = [a(1), b(2)];

            obj = parametrization.Ti.points(p1,p2,p3,p4);
        end

        % Like the constructor but allows inputing line curves as 2-cell arrays:
        %     example: parametrization.Ti.linesAndCurves(g1, g2, {a, b} g4)
        function obj = linesAndCurves(C1, C2, C3, C4)
            C = {C1, C2, C3, C4};
            c = cell(1,4);

            for i = 1:4
                if ~iscell(C{i})
                    c{i} = C{i};
                else
                    c{i} = parametrization.Curve.line(C{i}{:});
                end
            end

            obj = parametrization.Ti(c{:});
        end

        function label(varargin)
            if nargin == 2 && ischar(varargin{2})
                label_impl(varargin{:});
            else
                for i = 1:length(varargin)
                    label_impl(varargin{i},inputname(i));
                end
            end


            function label_impl(ti,str)
                S = ti.S;

                pc = S(0.5,0.5);

                margin = 0.1;
                pw = S(  margin,      0.5);
                pe = S(1-margin,      0.5);
                ps = S(     0.5,   margin);
                pn = S(     0.5, 1-margin);


                ti.show(2,2);
                parametrization.place_label(pc,str);
                parametrization.place_label(pw,'w');
                parametrization.place_label(pe,'e');
                parametrization.place_label(ps,'s');
                parametrization.place_label(pn,'n');
            end
        end
    end
end