view +noname/testCfl.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 7f6f04bfc007
children
line wrap: on
line source

% noname.testCfl(discr, timestepper_method, T, alpha0, tol,threshold, silentFlag)
% Example:
% noname.testCfl(Discr(100,4), 'rk4', 1, [0, 1])
function testCfl(discr, timestepper_method, T, alpha0, tol,threshold, silentFlag)
    default_arg('tol',0.00005);
    default_arg('threshold',1e2);
    default_arg('silentFlag', false);

    % TODO:
    % Set threshold from the initial conditions of the pde?
    % Take a set number of steps instead of evolving to a certain time?
    % Stop evolving when it has blown up?

    testAlpha = getAlphaTester(discr, T, threshold, silentFlag, timestepper_method);

    % Make sure that the upper bound is not working
    ok = testAlpha(alpha0(2));
    if ok % Upper bound too large!
        error('The upper bound on alpha is stable!')
    end

    % Make sure that the lower bound is ok
    if alpha0(1) ~= 0
        ok = testAlpha(alpha0(1));
        if ~ok
            error('The lower bound on alpha is unstable!');
        end
    end

    if silentFlag
        rsInterval = util.ReplaceableString('');
    end

    % Use bisection to find sharp estimate
    while( (alpha0(2)-alpha0(1))/alpha0(1) > tol)
        alpha = mean(alpha0);

        if ~silentFlag
            fprintf('[%.3e,%.3e]: ', alpha0(1), alpha0(2));
        else
            rsInterval.update('[%.3e,%.3e]: ', alpha0(1), alpha0(2));
        end

        [ok, n_step, maxVal] = testAlpha(alpha);

        if ok
            alpha0(1) = alpha;
            stability = 'STABLE';
        else
            alpha0(2) = alpha;
            stability = 'UNSTABLE';
        end

        if ~silentFlag
            fprintf('a = %.3e, n_step=%d %8s max = %.2e\n', alpha, n_step, stability, maxVal);
        end
    end

    if silentFlag
        rsInterval = util.ReplaceableString('');
    end

    fprintf('T = %-3d dof = %-4d order = %d: clf = %.4e\n',T, discr.size(), discr.order, alpha0(1));

end

function f = getAlphaTester(discr, T, threshold, silentFlag, timestepper_method)

    % Returns true if cfl was ok
    function [ok, n_step, maxVal] = testAlpha(alpha)
        ts = discr.getTimestepper(struct('method', timestepper_method, 'cfl', alpha));

        warning('off','all')
        ts.evolve(T,true);
        warning('on','all')

        [v,t] = ts.getV();
        maxVal = max(v);

        if isnan(maxVal) || maxVal == Inf || abs(maxVal) > threshold
            ok = false;
        else
            ok = true;
        end

        n_step = ts.n;
    end

    f = @testAlpha;
end