view +noname/calculateErrors.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 1201eb16557e
children
line wrap: on
line source

% [discr, trueSolution] =  schemeFactory(m)
%     where trueSolution should be a timeSnapshot of the true solution a time T
% T is the end time
% m are grid size parameters.
% N are number of timesteps to use for each gird size
% timeOpt are options for the timeStepper
% errorFun is a function_handle taking 2 or 3 arguments, errorFun(trueSolution, approxSolution), errorFun(trueSolution, approxSolution, discr)
function e = calculateErrors(schemeFactory, T, m, N, errorFun, timeOpt)
    %TODO: Ability to choose paralell or not
    assertType(schemeFactory, 'function_handle');
    assertNumberOfArguments(schemeFactory, 1);
    assertScalar(T);
    assert(length(m) == length(N), 'Vectors m and N must have the same length');
    assertType(errorFun, 'function_handle');

    if ~ismember(nargin(errorFun), [2,3])
        error('sbplib:noname:calculateErrors:wrongNumberOfArguments', '"%s" must have 2 or 3, found %d', toString(errorFun), nargin(errorFun));
    end

    default_arg('timeOpt', struct());


    e = zeros(1,length(m));
    parfor i = 1:length(m)
        done = timeTask('m = %3d ', m(i));

        [discr, trueSolution] = schemeFactory(m(i));

        timeOptTemp = timeOpt;
        timeOptTemp.k = T/N(i);
        ts = discr.getTimestepper(timeOptTemp);
        ts.stepTo(N(i), true);
        approxSolution = discr.getTimeSnapshot(ts);

        switch nargin(errorFun)
            case 2
                e(i) = errorFun(trueSolution, approxSolution);
            case 3
                e(i) = errorFun(trueSolution, approxSolution, discr);
        end

        fprintf('e = %.4e', e(i))
        done()
    end
    fprintf('\n')
end


%% Example error function
% u_true = grid.evalOn(dr.grid, @(x,y)trueSolution(T,x,y));
% err = u_true-u_false;
% e(i) = norm(err)/norm(u_true);
% % e(i) = sqrt(err'*d.H*d.J*err/(u_true'*d.H*d.J*u_true));