Mercurial > repos > public > sbplib
view +multiblock/Laplace.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 23ad69a347dd |
children |
line wrap: on
line source
classdef Laplace < scheme.Scheme properties grid order mbDiffOp D H J end methods function obj = Laplace(g, order, a, b, opGen) default_arg('order', 4); default_arg('a', 1); default_arg('b', 1); default_arg('opGen', @sbp.D4Variable); obj.grid = g; obj.order = order; obj.mbDiffOp = multiblock.DiffOp(@scheme.LaplaceCurvilinear, obj.grid, order, {a,b,opGen}); obj.D = obj.mbDiffOp.D; obj.J = obj.jacobian(); obj.H = obj.mbDiffOp.H; end function s = size(obj) s = size(obj.mbDiffOp); end function J = jacobian(obj) N = obj.grid.nBlocks; J = cell(N,N); for i = 1:N J{i,i} = obj.mbDiffOp.diffOps{i}.J; end J = blockmatrix.toMatrix(J); end function op = getBoundaryOperator(obj, opName, boundary) op = getBoundaryOperator(obj.mbDiffOp, opName, boundary); end function op = getBoundaryQuadrature(obj, boundary) op = getBoundaryQuadrature(obj.mbDiffOp, boundary); end function [closure, penalty] = boundary_condition(obj,boundary,type) % TODO: Change name to boundaryCondition [closure, penalty] = boundary_condition(obj.mbDiffOp, boundary, type); end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('Not implemented') end end end