Mercurial > repos > public > sbplib
view +multiblock/+domain/Circle.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 9be370486d36 |
children |
line wrap: on
line source
classdef Circle < multiblock.DefCurvilinear properties r, c hs r_arc omega end methods function obj = Circle(r, c, hs) default_arg('r', 1); default_arg('c', [0; 0]); default_arg('hs', 0.435); % alpha = 0.75; % hs = alpha*r/sqrt(2); % Square should not be a square, it should be an arc. The arc radius % is chosen so that the three angles of the meshes are all equal. % This gives that the (half)arc opening angle of should be omega = pi/12 omega = pi/12; r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); % = hs* 1/sin(omega) c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0]; cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]); c2 = cir(0); c3 = cir(1); s1 = [-hs; -hs]; s2 = [ hs; -hs]; s3 = [ hs; hs]; s4 = [-hs; hs]; sp2 = parametrization.Curve.line(s2,c2); sp3 = parametrization.Curve.line(s3,c3); Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]); Se2 = Se1.rotate(c,pi/2); Se3 = Se2.rotate(c,pi/2); Se4 = Se3.rotate(c,pi/2); S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1); A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse); B = A.rotate(c,1*pi/2).rotate_edges(-1); C = A.rotate(c,2*pi/2).rotate_edges(-1); D = A.rotate(c,3*pi/2).rotate_edges(0); blocks = {S,A,B,C,D}; blocksNames = {'S','A','B','C','D'}; conn = cell(5,5); conn{1,2} = {'e','w'}; conn{1,3} = {'n','s'}; conn{1,4} = {'w','s'}; conn{1,5} = {'s','w'}; conn{2,3} = {'n','e'}; conn{3,4} = {'w','e'}; conn{4,5} = {'w','s'}; conn{5,2} = {'n','s'}; boundaryGroups = struct(); boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}}); boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}}); boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}}); boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}}); boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}}); obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames); obj.r = r; obj.c = c; obj.hs = hs; obj.r_arc = r_arc; obj.omega = omega; end function ms = getGridSizes(obj, m) m_S = m; % m_Radial s = 2*obj.hs; innerArc = obj.r_arc*obj.omega; outerArc = obj.r*pi/2; shortSpoke = obj.r-s/sqrt(2); x = (1/(2-sqrt(3))-1)*obj.hs; longSpoke = (obj.r+x)-obj.r_arc; m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2); ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]}; end end end