view +multiblock/+domain/Circle.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 9be370486d36
children
line wrap: on
line source

classdef Circle < multiblock.DefCurvilinear
    properties
        r, c

        hs
        r_arc
        omega
    end

    methods
        function obj = Circle(r, c, hs)
            default_arg('r', 1);
            default_arg('c', [0; 0]);
            default_arg('hs', 0.435);


            % alpha = 0.75;
            % hs = alpha*r/sqrt(2);

            % Square should not be a square, it should be an arc. The arc radius
            % is chosen so that the three angles of the meshes are all equal.
            % This gives that the (half)arc opening angle of should be omega = pi/12
            omega = pi/12;
            r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); %  = hs* 1/sin(omega)
            c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0];

            cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]);

            c2 = cir(0);
            c3 = cir(1);

            s1 = [-hs; -hs];
            s2 = [ hs; -hs];
            s3 = [ hs;  hs];
            s4 = [-hs;  hs];

            sp2 = parametrization.Curve.line(s2,c2);
            sp3 = parametrization.Curve.line(s3,c3);

            Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]);
            Se2 = Se1.rotate(c,pi/2);
            Se3 = Se2.rotate(c,pi/2);
            Se4 = Se3.rotate(c,pi/2);


            S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1);

            A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse);
            B = A.rotate(c,1*pi/2).rotate_edges(-1);
            C = A.rotate(c,2*pi/2).rotate_edges(-1);
            D = A.rotate(c,3*pi/2).rotate_edges(0);

            blocks = {S,A,B,C,D};
            blocksNames = {'S','A','B','C','D'};

            conn = cell(5,5);
            conn{1,2} = {'e','w'};
            conn{1,3} = {'n','s'};
            conn{1,4} = {'w','s'};
            conn{1,5} = {'s','w'};

            conn{2,3} = {'n','e'};
            conn{3,4} = {'w','e'};
            conn{4,5} = {'w','s'};
            conn{5,2} = {'n','s'};

            boundaryGroups = struct();
            boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}});
            boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}});
            boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}});
            boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}});
            boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}});

            obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames);

            obj.r     = r;
            obj.c     = c;
            obj.hs    = hs;
            obj.r_arc = r_arc;
            obj.omega = omega;
        end

        function ms = getGridSizes(obj, m)
            m_S = m;

            % m_Radial
            s = 2*obj.hs;
            innerArc = obj.r_arc*obj.omega;
            outerArc = obj.r*pi/2;
            shortSpoke = obj.r-s/sqrt(2);
            x = (1/(2-sqrt(3))-1)*obj.hs;
            longSpoke =  (obj.r+x)-obj.r_arc;
            m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2);

            ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]};
        end
    end
end