view +grid/equidistantCurvilinear.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 9eff7b58c5f7
children
line wrap: on
line source

% Creates a curvilinear grid of dimension length(m).
% over the logical domain xi_lim, eta_lim, ...
% If all limits are ommited they are set to {0,1}.
% Examples:
%   g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta])
%   g = grid.equidistantCurvilinear(mapping, [m_xi, m_eta], xi_lim, eta_lim)
%   g = grid.equidistantCurvilinear(mapping, [10, 15], {0,1}, {0,1})
function g = equidistantCurvilinear(mapping, m, varargin)
    if isempty(varargin)
        varargin = repmat({{0,1}}, [1 length(m)]);
    end

    if length(m) ~= length(varargin)
        error('grid:equidistant:NonMatchingParameters','The number of provided dimensions do not match.')
    end

    for i = 1:length(m)
        if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2
           error('grid:equidistant:InvalidLimits','The limits should be cell arrays with 2 elements.');
        end

        if varargin{i}{1} > varargin{i}{2}
            error('grid:equidistant:InvalidLimits','The elements of the limit must be increasing.');
        end
    end

    X = {};
    h = [];
    for i = 1:length(m)
        [X{i}, h(i)] = util.get_grid(varargin{i}{:},m(i));
    end

    g = grid.Curvilinear(mapping, X{:});
    g.logic.h = h;
end