view +grid/bspline.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 4f7930d2d2c4
children
line wrap: on
line source

% Calculates a D dimensional p-order bspline at t with knots T and control points P.
%  T = [t0 t1 t2 ... tm] is a 1 x (m+1) vector with non-decresing elements and t0 = 0 tm = 1.
%  P = [P0 P1 P2 ... Pn] is a D x (n+1) matrix.

% knots p+1 to m-p-1 are the internal knots

% Implemented from: http://mathworld.wolfram.com/B-Spline.html
function C = bspline(t,p,P,T)
    m = length(T) - 1;
    n = size(P,2) - 1;
    D = size(P,1);

    assert(p == m - n - 1);

    C = zeros(D,length(t));

    for i = 0:n
        for k = 1:D
            C(k,:) = C(k,:) + P(k,1+i)*B(i,p,t,T);
        end
    end

    % Curve not defined for t = 1 ? Ugly fix:
    I = find(t == 1);
    C(:,I) = repmat(P(:,end),[1,length(I)]);
end

function o = B(i, j, t, T)
    if j == 0
        o = T(1+i) <= t & t < T(1+i+1);
        return
    end

    if T(1+i+j)-T(1+i) ~= 0
        a = (t-T(1+i))/(T(1+i+j)-T(1+i));
    else
        a = t*0;
    end

    if T(1+i+j+1)-T(1+i+1) ~= 0
        b = (T(1+i+j+1)-t)/(T(1+i+j+1)-T(1+i+1));
    else
        b = t*0;
    end

    o = a.*B(i, j-1, t, T) + b.*B(i+1, j-1, t, T);
end