Mercurial > repos > public > sbplib
view +grid/CurvilinearTest.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 7c1d3fc33f90 |
children |
line wrap: on
line source
function tests = CurvilinearTest() tests = functiontests(localfunctions); end function testMappingInputGridFunction(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { [10, 1]; [10*6, 2]; [10*5*7, 3]; }; % How to test this? Just make sure it runs without errors. for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(size(g.coords),out{i}); end end function testMappingInputComponentMatrix(testCase) in = { {{1:3}, [1 2 3]'}, {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,in{i}{2}); end end function testMappingInputCellOfMatrix(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,out{i}); end end function testMappingInputCellOfVectors(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; end function testMappingInputError(testCase) testCase.verifyFail(); end function testScaling(testCase) in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}; g = grid.Curvilinear(in{2},in{1}{:}); testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet'); g.logicalGrid.h = [2 1]; testCase.verifyEqual(g.scaling(),[2 1]); end function testGetBoundaryNames(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.getBoundaryNames(), out{i}); end end function testGetBoundary(testCase) grids = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; boundaries = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for ig = 1:length(grids) g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:}); logicalGrid = grid.Cartesian(grids{ig}{1}{:}); for ib = 1:length(boundaries{ig}) logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib}); x = num2cell(logicalBoundary',2); expectedBoundary = grids{ig}{2}(x{:})'; testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary); end end end