view +grid/CartesianTest.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 7c1d3fc33f90
children
line wrap: on
line source

function tests = CartesianTest()
    tests = functiontests(localfunctions);
end


function testWarningEmptyGrid(testCase)
    in  = {
        {[]},
        {[],[1]},
        {[1],[2], []},
    };

    for i = 1:length(in)
        testCase.verifyError(@()grid.Cartesian(in{i}{:}),'grid:Cartesian:EmptyGrid');
    end
end

function testN(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [3,6,9,9,27];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.N(),out(i));
    end
end


function testD(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = [1,2,2,3,3];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.D(),out(i));
    end
end

function testSize(testCase)
    in  = {
        {[1 2 3]},
        {[1 2 3],[1 2]},
        {[1 2 3],[1 2 3]},
        {[1 2 3],[1 2 3], [1]},
        {[1 2 3],[1 2 3], [1 3 4]},
    };

    out = {
        [3],
        [3 2],
        [3 3],
        [3 3 1],
        [3 3 3],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.size(),out{i});
    end
end

function testPoints(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out = {
        [[1; 2]],
        [[1; 1; 2; 2],[3; 4; 3; 4]],
        [[1; 1; 1; 1; 2; 2; 2; 2],[3; 3; 4; 4; 3; 3; 4; 4],[ 5; 6; 5; 6; 5; 6; 5; 6]],
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.points(),out{i});
    end
end

function testMatrices(testCase)
    in  = {
        {[1 2]},
        {[1 2],[3 4]},
        {[1 2],[3 4], [5 6]},
    };

    out{1}{1} = [1; 2];

    out{2}{1} = [1, 1; 2, 2];
    out{2}{2} = [3, 4; 3, 4];

    out{3}{1}(:,:,1) = [1, 1; 2, 2];
    out{3}{1}(:,:,2) = [1, 1; 2, 2];

    out{3}{2}(:,:,1) = [3, 4; 3, 4];
    out{3}{2}(:,:,2) = [3, 4; 3, 4];

    out{3}{3}(:,:,1) = [5, 5; 5, 5];
    out{3}{3}(:,:,2) = [6, 6; 6, 6];

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.matrices(),out{i});
    end
end


function testRestrictFuncInvalidInput(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 4 5]},
        {[1 3],[4 5 6 8]},
        {[1 3],[4 6 8]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36];
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38; 39; 40];
    };

    out = {
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingGrids',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
        'grid:Cartesian:restrictFunc:NonMatchingFunctionSize',
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyError(@()g1.restrictFunc(inGf{i},g2),out{i});
    end
end

function testRestrictFunc(testCase)
    inG1  = {
        {[1 2 3 4 5]},
        {[1 2 3],[4 5 6 7 8]},
    };

    inG2  = {
        {[1 3 5]},
        {[1 3],[4 6 8]},
    };

    inGf = {
        [1; 2; 3; 4; 5],
        [14; 15; 16; 17; 18; 24; 25; 26; 27; 28; 34; 35; 36; 37; 38];
    };

    outGf = {
        [1; 3; 5],
        [14; 16; 18; 34; 36; 38];
    };

    for i = 1:length(inG1)
        g1 = grid.Cartesian(inG1{i}{:});
        g2 = grid.Cartesian(inG2{i}{:});
        testCase.verifyEqual(g1.restrictFunc(inGf{i}, g2), outGf{i});
    end
end

function testScaling(testCase)
    in = {[1 2 3], [1 2]};
    g = grid.Cartesian(in{:});

    testCase.verifyError(@()g.scaling(),'grid:Cartesian:NoScalingSet');

    g.h = [2 1];
    testCase.verifyEqual(g.scaling(),[2 1]);

end


function testGetBoundaryNames(testCase)
    in = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    out = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };

    for i = 1:length(in)
        g = grid.Cartesian(in{i}{:});
        testCase.verifyEqual(g.getBoundaryNames(), out{i});
    end
end

function testGetBoundary(testCase)
    grids = {
        {[1 2 3]},
        {[1 2 3], [4 5]},
        {[1 2 3], [4 5], [6 7 8]},
    };

    boundaries = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };


    % 1d
    out{1,1} = 1;
    out{1,2} = 3;

    % 2d
    out{2,1} = [
        1,4;
        1,5;
    ];
    out{2,2} = [
        3,4;
        3,5;
    ];
    out{2,3} = [
        1,4;
        2,4;
        3,4;
    ];
    out{2,4} = [
        1,5;
        2,5;
        3,5;
    ];

    % 3d
    out{3,1} = [
        1,4,6;
        1,4,7;
        1,4,8;
        1,5,6;
        1,5,7;
        1,5,8;
    ];
    out{3,2} = [
        3,4,6;
        3,4,7;
        3,4,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,3} = [
        1,4,6;
        1,4,7;
        1,4,8;
        2,4,6;
        2,4,7;
        2,4,8;
        3,4,6;
        3,4,7;
        3,4,8;
    ];
    out{3,4} = [
        1,5,6;
        1,5,7;
        1,5,8;
        2,5,6;
        2,5,7;
        2,5,8;
        3,5,6;
        3,5,7;
        3,5,8;
    ];
    out{3,5} = [
        1,4,6;
        1,5,6;
        2,4,6;
        2,5,6;
        3,4,6;
        3,5,6;
    ];
    out{3,6} = [
        1,4,8;
        1,5,8;
        2,4,8;
        2,5,8;
        3,4,8;
        3,5,8;
    ];

    for ig = 1:length(grids)
        g = grid.Cartesian(grids{ig}{:});
        for ib = 1:length(boundaries{ig})
            testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), out{ig,ib});
        end
    end
end