Mercurial > repos > public > sbplib
view +time/SBPInTimeScaled.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | e95a0f2f7a8d |
children | 47e86b5270ad |
line wrap: on
line source
classdef SBPInTimeScaled < time.Timestepper % The SBP in time method. % Implemented for A*v_t = B*v + f(t), v(0) = v0 % The resulting system of equations is % M*u_next= K*u_prev_end + f properties A,B f k % total time step. blockSize % number of points in each block N % Number of components order nodes Mtilde,Ktilde % System matrices L,U,p,q % LU factorization of M e_T scaling S, Sinv % Scaling matrices % Time state t vtilde n end methods function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); if(strcmp(TYPE,'gauss')) default_arg('order',4) default_arg('blockSize',4) else default_arg('order', 8); default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); end obj.A = A; obj.B = B; obj.scaling = scaling; if ~isempty(f) obj.f = f; else obj.f = @(t)sparse(length(v0),1); end obj.k = k; obj.blockSize = blockSize; obj.N = length(v0); obj.n = 0; obj.t = t0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(blockSize,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); case 'gauss' ops = sbp.D1Gauss(blockSize,{0,obj.k}); end I = speye(size(A)); I_t = speye(blockSize,blockSize); D1 = kron(ops.D1, I); HI = kron(ops.HI, I); e_0 = kron(ops.e_l, I); e_T = kron(ops.e_r, I); obj.nodes = ops.x; % Convert to form M*w = K*v0 + f(t) tau = kron(I_t, A) * e_0; M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); K = HI*tau; obj.S = kron(I_t, spdiag(scaling)); obj.Sinv = kron(I_t, spdiag(1./scaling)); obj.Mtilde = obj.Sinv*M*obj.S; obj.Ktilde = obj.Sinv*K*spdiag(scaling); obj.e_T = e_T; % LU factorization [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); obj.vtilde = (1./obj.scaling).*v0; end function [v,t] = getV(obj) v = obj.scaling.*obj.vtilde; t = obj.t; end function obj = step(obj) forcing = zeros(obj.blockSize*obj.N,1); for i = 1:obj.blockSize forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); end RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; y = obj.L\RHS(obj.p); z = obj.U\y; w = zeros(size(z)); w(obj.q) = z; obj.vtilde = obj.e_T'*w; obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods(Static) function N = smallestBlockSize(order,TYPE) default_arg('TYPE','gauss') switch TYPE case 'gauss' N = 4; end end end end