view +time/CdiffNonlin.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents d1f9dd55a2b0
children b5e5b195da1e
line wrap: on
line source

classdef CdiffNonlin < time.Timestepper
    properties
        D
        E
        S
        k
        t
        v
        v_prev
        n
    end


    methods
        function obj = CdiffNonlin(D, E, S, k, t0,n0, v, v_prev)
            m = size(D(v),1);
            default_arg('E',0);
            default_arg('S',0);

            if isnumeric(S)
                S = @(v,t)S;
            end

            if isnumeric(E)
                E = @(v)E;
            end


            % m = size(D,1);
            % default_arg('E',sparse(m,m));
            % default_arg('S',sparse(m,1));

            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.k = k;
            obj.t = t0;
            obj.n = n0;
            obj.v = v;
            obj.v_prev = v_prev;
        end

        function [v,t] = getV(obj)
            v = obj.v;
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u))
            t = obj.t;
        end

        function obj = step(obj)
            D = obj.D(obj.v);
            E = obj.E(obj.v);
            S = obj.S(obj.v,obj.t);

            m = size(D,1);
            I = speye(m);

            %% Calculate for which indices we need to solve system of equations
            [rows,cols] = find(E);
            j = union(rows,cols);
            i = setdiff(1:m,j);


            %% Calculate matrices need for the timestep
            % Before optimization:  A =  1/k^2 * I - 1/(2*k)*E;
            k = obj.k;

            Aj = 1/k^2 * I(j,j) - 1/(2*k)*E(j,j);
            B =  2/k^2 * I + D;
            C = -1/k^2 * I - 1/(2*k)*E;

            %% Take the timestep
            v = obj.v;
            v_prev = obj.v_prev;

            % Want to solve the seq A*v_next = b where
            b = (B*v + C*v_prev + S);

            % Before optimization:  obj.v = A\b;

            obj.v(i) = k^2*b(i);
            obj.v(j) =  Aj\b(j);

            obj.v_prev = v;

            %% Update state of the timestepper
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end
end