Mercurial > repos > public > sbplib
view +time/CdiffNonlin.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | d1f9dd55a2b0 |
children | b5e5b195da1e |
line wrap: on
line source
classdef CdiffNonlin < time.Timestepper properties D E S k t v v_prev n end methods function obj = CdiffNonlin(D, E, S, k, t0,n0, v, v_prev) m = size(D(v),1); default_arg('E',0); default_arg('S',0); if isnumeric(S) S = @(v,t)S; end if isnumeric(E) E = @(v)E; end % m = size(D,1); % default_arg('E',sparse(m,m)); % default_arg('S',sparse(m,1)); obj.D = D; obj.E = E; obj.S = S; obj.k = k; obj.t = t0; obj.n = n0; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) t = obj.t; end function obj = step(obj) D = obj.D(obj.v); E = obj.E(obj.v); S = obj.S(obj.v,obj.t); m = size(D,1); I = speye(m); %% Calculate for which indices we need to solve system of equations [rows,cols] = find(E); j = union(rows,cols); i = setdiff(1:m,j); %% Calculate matrices need for the timestep % Before optimization: A = 1/k^2 * I - 1/(2*k)*E; k = obj.k; Aj = 1/k^2 * I(j,j) - 1/(2*k)*E(j,j); B = 2/k^2 * I + D; C = -1/k^2 * I - 1/(2*k)*E; %% Take the timestep v = obj.v; v_prev = obj.v_prev; % Want to solve the seq A*v_next = b where b = (B*v + C*v_prev + S); % Before optimization: obj.v = A\b; obj.v(i) = k^2*b(i); obj.v(j) = Aj\b(j); obj.v_prev = v; %% Update state of the timestepper obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end