Mercurial > repos > public > sbplib
view +time/CdiffImplicit.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 1a30dbe99c7c |
children | 47e86b5270ad |
line wrap: on
line source
classdef CdiffImplicit < time.Timestepper properties A, B, C AA, BB, CC G k t v, v_prev n % LU factorization L,U,p,q end methods % Solves % A*v_tt + B*v_t + C*v = G(t) % v(t0) = v0 % v_t(t0) = v0t % starting at time t0 with timestep % Using % A*Dp*Dm*v_n + B*D0*v_n + C*I0*v_n = G(t_n) function obj = CdiffImplicit(A, B, C, G, v0, v0t, k, t0) m = length(v0); default_arg('A', speye(m)); default_arg('B', sparse(m,m)); default_arg('G', @(t) sparse(m,1)); default_arg('t0', 0); obj.A = A; obj.B = B; obj.C = C; obj.G = G; % Rewrite as AA*v_(n+1) + BB*v_n + CC*v_(n-1) = G(t_n) AA = A/k^2 + B/(2*k) + C/2; BB = -2*A/k^2; CC = A/k^2 - B/(2*k) + C/2; obj.AA = AA; obj.BB = BB; obj.CC = CC; v_prev = v0; I = speye(m); v = v0 + k*v0t; if ~issparse(A) || ~issparse(B) || ~issparse(C) error('LU factorization with full pivoting only works for sparse matrices.') end [L,U,p,q] = lu(AA,'vector'); obj.L = L; obj.U = U; obj.p = p; obj.q = q; obj.k = k; obj.t = t0+k; obj.n = 1; obj.v = v; obj.v_prev = v_prev; end function [v,t] = getV(obj) v = obj.v; t = obj.t; end function [vt,t] = getVt(obj) vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) t = obj.t; end % Calculate the conserved energy (Dm*v_n)^2_A + Im*v_n^2_B function E = getEnergy(obj) v = obj.v; vp = obj.v_prev; vt = (obj.v - obj.v_prev)/obj.k; E = vt'*obj.A*vt + 1/2*(v'*obj.C*v + vp'*obj.C*vp); end function obj = step(obj) b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; obj.v_prev = obj.v; % % Backslash % obj.v = obj.AA\b; % LU with column pivot y = obj.L\b(obj.p); z = obj.U\y; obj.v(obj.q) = z; % Update time obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end