Mercurial > repos > public > sbplib
view +scheme/Wave2d.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 5afc774fb7c4 |
children |
line wrap: on
line source
classdef Wave2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm alpha H % Discrete norm Hi H_x, H_y % Norms in the x and y directions Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. Hi_x, Hi_y Hix, Hiy e_w, e_e, e_s, e_n d1_w, d1_e, d1_s, d1_n gamm_x, gamm_y end methods function obj = Wave2d(m,lim,order,alpha) default_arg('alpha',1); xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end m_x = m(1); m_y = m(2); [x, h_x] = util.get_grid(xlim{:},m_x); [y, h_y] = util.get_grid(ylim{:},m_y); ops_x = sbp.Ordinary(m_x,h_x,order); ops_y = sbp.Ordinary(m_y,h_y,order); I_x = speye(m_x); I_y = speye(m_y); D2_x = sparse(ops_x.derivatives.D2); H_x = sparse(ops_x.norms.H); Hi_x = sparse(ops_x.norms.HI); M_x = sparse(ops_x.norms.M); e_l_x = sparse(ops_x.boundary.e_1); e_r_x = sparse(ops_x.boundary.e_m); d1_l_x = sparse(ops_x.boundary.S_1); d1_r_x = sparse(ops_x.boundary.S_m); D2_y = sparse(ops_y.derivatives.D2); H_y = sparse(ops_y.norms.H); Hi_y = sparse(ops_y.norms.HI); M_y = sparse(ops_y.norms.M); e_l_y = sparse(ops_y.boundary.e_1); e_r_y = sparse(ops_y.boundary.e_m); d1_l_y = sparse(ops_y.boundary.S_1); d1_r_y = sparse(ops_y.boundary.S_m); D2 = kr(D2_x, I_y) + kr(I_x, D2_y); obj.H = kr(H_x,H_y); obj.Hx = kr(H_x,I_y); obj.Hy = kr(I_x,H_y); obj.Hix = kr(Hi_x,I_y); obj.Hiy = kr(I_x,Hi_y); obj.Hi = kr(Hi_x,Hi_y); obj.M = kr(M_x,H_y)+kr(H_x,M_y); obj.e_w = kr(e_l_x,I_y); obj.e_e = kr(e_r_x,I_y); obj.e_s = kr(I_x,e_l_y); obj.e_n = kr(I_x,e_r_y); obj.d1_w = kr(d1_l_x,I_y); obj.d1_e = kr(d1_r_x,I_y); obj.d1_s = kr(I_x,d1_l_y); obj.d1_n = kr(I_x,d1_r_y); obj.m = m; obj.h = [h_x h_y]; obj.order = order; obj.alpha = alpha; obj.D = alpha*D2; obj.x = x; obj.y = y; obj.X = kr(x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),y); obj.gamm_x = h_x*ops_x.borrowing.M.S; obj.gamm_y = h_y*ops_y.borrowing.M.S; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','neumann'); default_arg('data',0); [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); gamm = obj.getBoundaryBorrowing(boundary); s = obj.getBoundarySign(boundary); halfnorm_inv = obj.getHalfnormInv(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} alpha = obj.alpha; % tau1 < -alpha^2/gamma tuning = 1.1; tau1 = -tuning*alpha/gamm; tau2 = s*alpha; p = tau1*e + tau2*d; closure = halfnorm_inv*p*e'; pp = halfnorm_inv*p; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Neumann boundary condition case {'N','n','neumann'} alpha = obj.alpha; tau1 = -s*alpha; tau2 = 0; tau = tau1*e + tau2*d; closure = halfnorm_inv*tau*d'; pp = halfnorm_inv*tau; switch class(data) case 'double' penalty = pp*data; case 'function_handle' penalty = @(t)pp*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); gamm_u = obj.getBoundaryBorrowing(boundary); s_u = obj.getBoundarySign(boundary); halfnorm_inv = obj.getHalfnormInv(boundary); [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); tuning = 1.1; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; tau2 = s_u*1/2*alpha_u; sig1 = s_u*(-1/2); sig2 = 0; tau = tau1*e_u + tau2*d_u; sig = sig1*e_u + sig2*d_u; closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'w' e = obj.e_w; case 'e' e = obj.e_e; case 's' e = obj.e_s; case 'n' e = obj.e_n; end varargout{i} = e; case 'd' switch boundary case 'w' d = obj.d1_w; case 'e' d = obj.d1_e; case 's' d = obj.d1_s; case 'n' d = obj.d1_n; end varargout{i} = d; end end end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case 'w' H_b = obj.H_y; case 'e' H_b = obj.H_y; case 's' H_b = obj.H_x; case 'n' H_b = obj.H_x; end end % Returns borrowing constant gamma % boundary -- string function gamm = getBoundaryBorrowing(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'w','e'} gamm = obj.gamm_x; case {'s','n'} gamm = obj.gamm_y; end end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'e','n'} s = 1; case {'w','s'} s = -1; end end % Returns the halfnorm_inv used in SATs. TODO: better notation function Hinv = getHalfnormInv(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case 'w' Hinv = obj.Hix; case 'e' Hinv = obj.Hix; case 's' Hinv = obj.Hiy; case 'n' Hinv = obj.Hiy; end end function N = size(obj) N = prod(obj.m); end end end