view +scheme/Wave2d.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 5afc774fb7c4
children
line wrap: on
line source

classdef Wave2d < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        x,y % Grid
        X,Y % Values of x and y for each grid point
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        alpha

        H % Discrete norm
        Hi
        H_x, H_y % Norms in the x and y directions
        Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_x, Hi_y
        Hix, Hiy
        e_w, e_e, e_s, e_n
        d1_w, d1_e, d1_s, d1_n
        gamm_x, gamm_y
    end

    methods
        function obj = Wave2d(m,lim,order,alpha)
            default_arg('alpha',1);

            xlim = lim{1};
            ylim = lim{2};

            if length(m) == 1
                m = [m m];
            end

            m_x = m(1);
            m_y = m(2);

            [x, h_x] = util.get_grid(xlim{:},m_x);
            [y, h_y] = util.get_grid(ylim{:},m_y);

            ops_x = sbp.Ordinary(m_x,h_x,order);
            ops_y = sbp.Ordinary(m_y,h_y,order);

            I_x = speye(m_x);
            I_y = speye(m_y);

            D2_x = sparse(ops_x.derivatives.D2);
            H_x =  sparse(ops_x.norms.H);
            Hi_x = sparse(ops_x.norms.HI);
            M_x =  sparse(ops_x.norms.M);
            e_l_x = sparse(ops_x.boundary.e_1);
            e_r_x = sparse(ops_x.boundary.e_m);
            d1_l_x = sparse(ops_x.boundary.S_1);
            d1_r_x = sparse(ops_x.boundary.S_m);

            D2_y = sparse(ops_y.derivatives.D2);
            H_y =  sparse(ops_y.norms.H);
            Hi_y = sparse(ops_y.norms.HI);
            M_y =  sparse(ops_y.norms.M);
            e_l_y = sparse(ops_y.boundary.e_1);
            e_r_y = sparse(ops_y.boundary.e_m);
            d1_l_y = sparse(ops_y.boundary.S_1);
            d1_r_y = sparse(ops_y.boundary.S_m);

            D2 = kr(D2_x, I_y) + kr(I_x, D2_y);
            obj.H = kr(H_x,H_y);
            obj.Hx  = kr(H_x,I_y);
            obj.Hy  = kr(I_x,H_y);
            obj.Hix = kr(Hi_x,I_y);
            obj.Hiy = kr(I_x,Hi_y);
            obj.Hi = kr(Hi_x,Hi_y);
            obj.M = kr(M_x,H_y)+kr(H_x,M_y);
            obj.e_w  = kr(e_l_x,I_y);
            obj.e_e  = kr(e_r_x,I_y);
            obj.e_s  = kr(I_x,e_l_y);
            obj.e_n  = kr(I_x,e_r_y);
            obj.d1_w = kr(d1_l_x,I_y);
            obj.d1_e = kr(d1_r_x,I_y);
            obj.d1_s = kr(I_x,d1_l_y);
            obj.d1_n = kr(I_x,d1_r_y);

            obj.m = m;
            obj.h = [h_x h_y];
            obj.order = order;

            obj.alpha = alpha;
            obj.D = alpha*D2;
            obj.x = x;
            obj.y = y;
            obj.X = kr(x,ones(m_y,1));
            obj.Y = kr(ones(m_x,1),y);

            obj.gamm_x = h_x*ops_x.borrowing.M.S;
            obj.gamm_y = h_y*ops_y.borrowing.M.S;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','neumann');
            default_arg('data',0);

            [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            gamm = obj.getBoundaryBorrowing(boundary);
            s = obj.getBoundarySign(boundary);
            halfnorm_inv = obj.getHalfnormInv(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    alpha = obj.alpha;

                    % tau1 < -alpha^2/gamma
                    tuning = 1.1;
                    tau1 = -tuning*alpha/gamm;
                    tau2 =  s*alpha;

                    p = tau1*e + tau2*d;

                    closure = halfnorm_inv*p*e';

                    pp = halfnorm_inv*p;
                    switch class(data)
                        case 'double'
                            penalty = pp*data;
                        case 'function_handle'
                            penalty = @(t)pp*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end


                % Neumann boundary condition
                case {'N','n','neumann'}
                    alpha = obj.alpha;
                    tau1 = -s*alpha;
                    tau2 = 0;
                    tau = tau1*e + tau2*d;

                    closure = halfnorm_inv*tau*d';

                    pp = halfnorm_inv*tau;
                    switch class(data)
                        case 'double'
                            penalty = pp*data;
                        case 'function_handle'
                            penalty = @(t)pp*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
            [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            gamm_u = obj.getBoundaryBorrowing(boundary);
            s_u = obj.getBoundarySign(boundary);
            halfnorm_inv = obj.getHalfnormInv(boundary);

            [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary);
            gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary);
            s_v = neighbour_scheme.getBoundarySign(neighbour_boundary);

            tuning = 1.1;

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v)

            tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning;
            tau2 = s_u*1/2*alpha_u;
            sig1 = s_u*(-1/2);
            sig2 = 0;

            tau = tau1*e_u + tau2*d_u;
            sig = sig1*e_u + sig2*d_u;

            closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u');
            penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v');
        end


        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string or a cell array of strings
        % boundary  -- string
        function varargout = getBoundaryOperator(obj, op, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            if ~iscell(op)
                op = {op};
            end

            for i = 1:numel(op)
                switch op{i}
                case 'e'
                    switch boundary
                    case 'w'
                        e = obj.e_w;
                    case 'e'
                        e = obj.e_e;
                    case 's'
                        e = obj.e_s;
                    case 'n'
                        e = obj.e_n;
                    end
                    varargout{i} = e;

                case 'd'
                    switch boundary
                    case 'w'
                        d = obj.d1_w;
                    case 'e'
                        d = obj.d1_e;
                    case 's'
                        d = obj.d1_s;
                    case 'n'
                        d = obj.d1_n;
                    end
                    varargout{i} = d;
                end
            end

        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case 'w'
                    H_b = obj.H_y;
                case 'e'
                    H_b = obj.H_y;
                case 's'
                    H_b = obj.H_x;
                case 'n'
                    H_b = obj.H_x;
            end
        end

        % Returns borrowing constant gamma
        % boundary -- string
        function gamm = getBoundaryBorrowing(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case {'w','e'}
                    gamm = obj.gamm_x;
                case {'s','n'}
                    gamm = obj.gamm_y;
            end
        end

        % Returns the boundary sign. The right boundary is considered the positive boundary
        % boundary -- string
        function s = getBoundarySign(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case {'e','n'}
                    s = 1;
                case {'w','s'}
                    s = -1;
            end
        end

        % Returns the halfnorm_inv used in SATs. TODO: better notation
        function Hinv = getHalfnormInv(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case 'w'
                    Hinv = obj.Hix;
                case 'e'
                    Hinv = obj.Hix;
                case 's'
                    Hinv = obj.Hiy;
                case 'n'
                    Hinv = obj.Hiy;
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end

    end
end