view +scheme/Utux2d.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 84200bbae101
children 433c89bf19e0
line wrap: on
line source

classdef Utux2d < scheme.Scheme
   properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        grid % Grid
        order % Order accuracy for the approximation
        v0 % Initial data

        a % Wave speed a = [a1, a2];
          % Can either be a constant vector or a cell array of function handles.

        H % Discrete norm
        H_x, H_y % Norms in the x and y directions
        Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms
        H_w, H_e, H_s, H_n % Boundary quadratures

        % Derivatives
        Dx, Dy

        % Boundary operators
        e_w, e_e, e_s, e_n

        D % Total discrete operator
    end


    methods
         function obj = Utux2d(g ,order, opSet, a)

            default_arg('a',1/sqrt(2)*[1, 1]);
            default_arg('opSet',@sbp.D2Standard);

            assertType(g, 'grid.Cartesian');
            if iscell(a)
                a1 = grid.evalOn(g, a{1});
                a2 = grid.evalOn(g, a{2});
                a = {spdiag(a1), spdiag(a2)};
            else
                a = {a(1), a(2)};
            end

            m = g.size();
            m_x = m(1);
            m_y = m(2);
            m_tot = g.N();

            xlim = {g.x{1}(1), g.x{1}(end)};
            ylim = {g.x{2}(1), g.x{2}(end)};
            obj.grid = g;

            % Operator sets
            ops_x = opSet(m_x, xlim, order);
            ops_y = opSet(m_y, ylim, order);
            Ix = speye(m_x);
            Iy = speye(m_y);

            % Norms
            Hx = ops_x.H;
            Hy = ops_y.H;
            Hxi = ops_x.HI;
            Hyi = ops_y.HI;

            obj.H_w = Hy;
            obj.H_e = Hy;
            obj.H_s = Hx;
            obj.H_n = Hx;
            obj.H_x = Hx;
            obj.H_y = Hy;
            obj.H = kron(Hx,Hy);
            obj.Hi = kron(Hxi,Hyi);
            obj.Hx = kron(Hx,Iy);
            obj.Hy = kron(Ix,Hy);
            obj.Hxi = kron(Hxi,Iy);
            obj.Hyi = kron(Ix,Hyi);

            % Derivatives
            Dx = ops_x.D1;
            Dy = ops_y.D1;
            obj.Dx = kron(Dx,Iy);
            obj.Dy = kron(Ix,Dy);

            % Boundary operators
            obj.e_w = kr(ops_x.e_l, Iy);
            obj.e_e = kr(ops_x.e_r, Iy);
            obj.e_s = kr(Ix, ops_y.e_l);
            obj.e_n = kr(Ix, ops_y.e_r);

            obj.m = m;
            obj.h = [ops_x.h ops_y.h];
            obj.order = order;
            obj.a = a;
            obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy);

        end
        % Closure functions return the opertors applied to the own domain to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type)
            default_arg('type','dirichlet');

            sigma = -1; % Scalar penalty parameter
            switch boundary
                case {'w','W','west','West'}
                    tau = sigma*obj.a{1}*obj.e_w*obj.H_y;
                    closure = obj.Hi*tau*obj.e_w';

                case {'s','S','south','South'}
                    tau = sigma*obj.a{2}*obj.e_s*obj.H_x;
                    closure = obj.Hi*tau*obj.e_s';
            end
            penalty = -obj.Hi*tau;

        end

        % type     Struct that specifies the interface coupling.
        %          Fields:
        %          -- couplingType             String, type of interface coupling
        %                                       % Default: 'upwind'. Other: 'centered'
        %          -- interpolation:    type of interpolation, default 'none'
        %          -- interpolationDamping:    damping on upstream and downstream sides, when using interpolation.
        %                                      Default {0,0} gives zero damping.
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            defaultType.couplingType = 'upwind';
            defaultType.interpolation = 'none';
            defaultType.interpolationDamping = {0,0};
            default_struct('type', defaultType);

            switch type.interpolation
            case {'none', ''}
                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            case {'op','OP'}
                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            otherwise
                error('Unknown type of interpolation: %s ', type.interpolation);
            end
        end

        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
            couplingType = type.couplingType;

            % Get neighbour boundary operator
            e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);

            switch couplingType

            % Upwind coupling (energy dissipation)
            case 'upwind'
                 sigma_ds = -1; %"Downstream" penalty
                 sigma_us = 0; %"Upstream" penalty

            % Energy-preserving coupling (no energy dissipation)
            case 'centered'
                 sigma_ds = -1/2; %"Downstream" penalty
                 sigma_us = 1/2; %"Upstream" penalty

            otherwise
                error(['Interface coupling type ' couplingType ' is not available.'])
            end

            switch boundary
                case {'w','W','west','West'}
                    tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y;
                    closure = obj.Hi*tau*obj.e_w';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'e','E','east','East'}
                    tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y;
                    closure = obj.Hi*tau*obj.e_e';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'s','S','south','South'}
                    tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x;
                    closure = obj.Hi*tau*obj.e_s';
                    penalty = -obj.Hi*tau*e_neighbour';
                case {'n','N','north','North'}
                    tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x;
                    closure = obj.Hi*tau*obj.e_n';
                    penalty = -obj.Hi*tau*e_neighbour';
             end

         end

         function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            % User can request special interpolation operators by specifying type.interpOpSet
            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);

            interpOpSet = type.interpOpSet;
            couplingType = type.couplingType;
            interpolationDamping = type.interpolationDamping;

            % Get neighbour boundary operator
            e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);

            switch couplingType

            % Upwind coupling (energy dissipation)
            case 'upwind'
                 sigma_ds = -1; %"Downstream" penalty
                 sigma_us = 0; %"Upstream" penalty

            % Energy-preserving coupling (no energy dissipation)
            case 'centered'
                 sigma_ds = -1/2; %"Downstream" penalty
                 sigma_us = 1/2; %"Upstream" penalty

            otherwise
            error(['Interface coupling type ' couplingType ' is not available.'])
            end

            int_damp_us = interpolationDamping{1};
            int_damp_ds = interpolationDamping{2};

            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            % Find the number of grid points along the interface
            switch boundary
                case {'w','e'}
                    m_u = obj.m(2);
                case {'s','n'}
                    m_u = obj.m(1);
            end
            m_v = size(e_neighbour, 2);

            % Build interpolation operators
            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
            Iu2v = intOps.Iu2v;
            Iv2u = intOps.Iv2u;

            I_local2neighbour_ds = intOps.Iu2v.bad;
            I_local2neighbour_us = intOps.Iu2v.good;
            I_neighbour2local_ds = intOps.Iv2u.good;
            I_neighbour2local_us = intOps.Iv2u.bad;

            I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us;
            I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds;


            switch boundary
            case {'w','W','west','West'}
                tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y;
                closure = obj.Hi*tau*obj.e_w';
                penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';

                beta = int_damp_ds*obj.a{1}...
                        *obj.e_w*obj.H_y;
                closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w';
            case {'e','E','east','East'}
                tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y;
                closure = obj.Hi*tau*obj.e_e';
                penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';

                beta = int_damp_us*obj.a{1}...
                        *obj.e_e*obj.H_y;
                closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e';
            case {'s','S','south','South'}
                tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x;
                closure = obj.Hi*tau*obj.e_s';
                penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';

                beta = int_damp_ds*obj.a{2}...
                        *obj.e_s*obj.H_x;
                closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s';
            case {'n','N','north','North'}
                tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x;
                closure = obj.Hi*tau*obj.e_n';
                penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';

                beta = int_damp_us*obj.a{2}...
                        *obj.e_n*obj.H_x;
                closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n';
             end


         end

        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string
        % boundary  -- string
        function o = getBoundaryOperator(obj, op, boundary)
            assertIsMember(op, {'e'})
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            o = obj.([op, '_', boundary]);
        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            H_b = obj.(['H_', boundary]);
        end

        function N = size(obj)
            N = obj.m;
        end

    end
end