view +scheme/Schrodinger2d.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 8d73fcdb07a5
children
line wrap: on
line source

classdef Schrodinger2d < scheme.Scheme

% Discretizes the Laplacian with constant coefficent,
% in the Schrödinger equation way (i.e., the discretization matrix is not necessarily
% definite)
% u_t = a*i*Laplace u
% opSet should be cell array of opSets, one per dimension. This
% is useful if we have periodic BC in one direction.

    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing

        grid
        dim

        order % Order of accuracy for the approximation

        % Diagonal matrix for variable coefficients
        a % Constant coefficient

        D % Total operator
        D1 % First derivatives

        % Second derivatives
        D2

        H, Hi % Inner products
        e_l, e_r
        d1_l, d1_r % Normal derivatives at the boundary
        e_w, e_e, e_s, e_n
        d_w, d_e, d_s, d_n

        H_boundary % Boundary inner products

    end

    methods

        function obj = Schrodinger2d(g ,order, a, opSet)
            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
            default_arg('a',1);
            dim = 2;

            assertType(g, 'grid.Cartesian');
            if isa(a, 'function_handle')
                a = grid.evalOn(g, a);
                a = spdiag(a);
            end

            m = g.size();
            m_tot = g.N();

            h = g.scaling();
            xlim = {g.x{1}(1), g.x{1}(end)};
            ylim = {g.x{2}(1), g.x{2}(end)};
            lim = {xlim, ylim};

            % 1D operators
            ops = cell(dim,1);
            for i = 1:dim
                ops{i} = opSet{i}(m(i), lim{i}, order);
            end

            I = cell(dim,1);
            D1 = cell(dim,1);
            D2 = cell(dim,1);
            H = cell(dim,1);
            Hi = cell(dim,1);
            e_l = cell(dim,1);
            e_r = cell(dim,1);
            d1_l = cell(dim,1);
            d1_r = cell(dim,1);

            for i = 1:dim
                I{i} = speye(m(i));
                D1{i} = ops{i}.D1;
                D2{i} = ops{i}.D2;
                H{i} =  ops{i}.H;
                Hi{i} = ops{i}.HI;
                e_l{i} = ops{i}.e_l;
                e_r{i} = ops{i}.e_r;
                d1_l{i} = ops{i}.d1_l;
                d1_r{i} = ops{i}.d1_r;
            end

            % Constant coeff D2
            for i = 1:dim
                D2{i} = D2{i}(ones(m(i),1));
            end

            %====== Assemble full operators ========
            obj.D1 = cell(dim,1);
            obj.D2 = cell(dim,1);
            obj.e_l = cell(dim,1);
            obj.e_r = cell(dim,1);
            obj.d1_l = cell(dim,1);
            obj.d1_r = cell(dim,1);

            % D1
            obj.D1{1} = kron(D1{1},I{2});
            obj.D1{2} = kron(I{1},D1{2});

            % Boundary operators
            obj.e_l{1} = kron(e_l{1},I{2});
            obj.e_l{2} = kron(I{1},e_l{2});
            obj.e_r{1} = kron(e_r{1},I{2});
            obj.e_r{2} = kron(I{1},e_r{2});

            obj.d1_l{1} = kron(d1_l{1},I{2});
            obj.d1_l{2} = kron(I{1},d1_l{2});
            obj.d1_r{1} = kron(d1_r{1},I{2});
            obj.d1_r{2} = kron(I{1},d1_r{2});

            % D2
            obj.D2{1} = kron(D2{1},I{2});
            obj.D2{2} = kron(I{1},D2{2});

            % Quadratures
            obj.H = kron(H{1},H{2});
            obj.Hi = inv(obj.H);
            obj.H_boundary = cell(dim,1);
            obj.H_boundary{1} = H{2};
            obj.H_boundary{2} = H{1};

            % Differentiation matrix D (without SAT)
            D2 = obj.D2;
            D = sparse(m_tot,m_tot);
            for j = 1:dim
                D = D + a*1i*D2{j};
            end
            obj.D = D;
            %=========================================%

            % Misc.
            obj.m = m;
            obj.h = h;
            obj.order = order;
            obj.grid = g;
            obj.dim = dim;
            obj.a = a;
            obj.e_w = obj.e_l{1};
            obj.e_e = obj.e_r{1};
            obj.e_s = obj.e_l{2};
            obj.e_n = obj.e_r{2};
            obj.d_w = obj.d1_l{1};
            obj.d_e = obj.d1_r{1};
            obj.d_s = obj.d1_l{2};
            obj.d_n = obj.d1_r{2};

        end


        % Closure functions return the operators applied to the own domain to close the boundary
        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
            default_arg('type','Neumann');
            default_arg('parameter', []);

            % nj: outward unit normal component.
            % nj = -1 for west, south, bottom boundaries
            % nj = 1  for east, north, top boundaries
            nj = obj.getBoundarySign(boundary);
            [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            H_gamma = obj.getBoundaryQuadrature(boundary);
            Hi = obj.Hi;
            a = e'*obj.a*e;

            switch type

            % Dirichlet boundary condition
            case {'D','d','dirichlet','Dirichlet'}
                    closure =  nj*Hi*d*a*1i*H_gamma*(e' );
                    penalty = -nj*Hi*d*a*1i*H_gamma;

            % Free boundary condition
            case {'N','n','neumann','Neumann'}
                    closure = -nj*Hi*e*a*1i*H_gamma*(d' );
                    penalty =  nj*Hi*e*a*1i*H_gamma;

            % Unknown boundary condition
            otherwise
                error('No such boundary condition: type = %s',type);
            end
        end

        % type     Struct that specifies the interface coupling.
        %          Fields:
        %          -- interpolation:    type of interpolation, default 'none'
        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            defaultType.interpolation = 'none';
            default_struct('type', defaultType);

            switch type.interpolation
            case {'none', ''}
                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            case {'op','OP'}
                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
            otherwise
                error('Unknown type of interpolation: %s ', type.interpolation);
            end
        end

        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain

            % Get boundary operators
            [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary);
            [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            H_gamma = obj.getBoundaryQuadrature(boundary);
            Hi = obj.Hi;
            a = obj.a;

            % Get outward unit normal component
            n = obj.getBoundarySign(boundary);

            Hi = obj.Hi;
            sigma = -n*1i*a/2;
            tau = -n*(1i*a)'/2;

            closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d';
            penalty = -tau*Hi*d*H_gamma*e_neighbour' ...
                      -sigma*Hi*e*H_gamma*d_neighbour';

        end

        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)

            % User can request special interpolation operators by specifying type.interpOpSet
            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);
            interpOpSet = type.interpOpSet;

            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary);
            [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            H_gamma = obj.getBoundaryQuadrature(boundary);
            Hi = obj.Hi;
            a = obj.a;

            % Get outward unit normal component
            n = obj.getBoundarySign(boundary);

            % Find the number of grid points along the interface
            m_u = size(e_u, 2);
            m_v = size(e_v, 2);

            % Build interpolation operators
            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
            Iu2v = intOps.Iu2v;
            Iv2u = intOps.Iv2u;

            sigma = -n*1i*a/2;
            tau = -n*(1i*a)'/2;

            closure = tau*Hi*d_u*H_gamma*e_u' + sigma*Hi*e_u*H_gamma*d_u';
            penalty = -tau*Hi*d_u*H_gamma*Iv2u.good*e_v' ...
                      -sigma*Hi*e_u*H_gamma*Iv2u.bad*d_v';

        end

        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
        function [j, nj] = get_boundary_number(obj, boundary)

            switch boundary
                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
                    j = 1;
                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
                    j = 2;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end

            switch boundary
                case {'w','W','west','West','s','S','south','South'}
                    nj = -1;
                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
                    nj = 1;
            end
        end

        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string or a cell array of strings
        % boundary  -- string
        function varargout = getBoundaryOperator(obj, op, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            if ~iscell(op)
                op = {op};
            end

            for i = 1:numel(op)
                switch op{i}
                case 'e'
                    switch boundary
                    case 'w'
                        e = obj.e_w;
                    case 'e'
                        e = obj.e_e;
                    case 's'
                        e = obj.e_s;
                    case 'n'
                        e = obj.e_n;
                    end
                    varargout{i} = e;

                case 'd'
                    switch boundary
                    case 'w'
                        d = obj.d_w;
                    case 'e'
                        d = obj.d_e;
                    case 's'
                        d = obj.d_s;
                    case 'n'
                        d = obj.d_n;
                    end
                    varargout{i} = d;
                end
            end
        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case 'w'
                    H_b = obj.H_boundary{1};
                case 'e'
                    H_b = obj.H_boundary{1};
                case 's'
                    H_b = obj.H_boundary{2};
                case 'n'
                    H_b = obj.H_boundary{2};
            end
        end

        % Returns the boundary sign. The right boundary is considered the positive boundary
        % boundary -- string
        function s = getBoundarySign(obj, boundary)
            assertIsMember(boundary, {'w', 'e', 's', 'n'})

            switch boundary
                case {'e','n'}
                    s = 1;
                case {'w','s'}
                    s = -1;
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end
    end
end