Mercurial > repos > public > sbplib
view +scheme/Schrodinger2d.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 8d73fcdb07a5 |
children |
line wrap: on
line source
classdef Schrodinger2d < scheme.Scheme % Discretizes the Laplacian with constant coefficent, % in the Schrödinger equation way (i.e., the discretization matrix is not necessarily % definite) % u_t = a*i*Laplace u % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrix for variable coefficients a % Constant coefficient D % Total operator D1 % First derivatives % Second derivatives D2 H, Hi % Inner products e_l, e_r d1_l, d1_r % Normal derivatives at the boundary e_w, e_e, e_s, e_n d_w, d_e, d_s, d_n H_boundary % Boundary inner products end methods function obj = Schrodinger2d(g ,order, a, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('a',1); dim = 2; assertType(g, 'grid.Cartesian'); if isa(a, 'function_handle') a = grid.evalOn(g, a); a = spdiag(a); end m = g.size(); m_tot = g.N(); h = g.scaling(); xlim = {g.x{1}(1), g.x{1}(end)}; ylim = {g.x{2}(1), g.x{2}(end)}; lim = {xlim, ylim}; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end % Constant coeff D2 for i = 1:dim D2{i} = D2{i}(ones(m(i),1)); end %====== Assemble full operators ======== obj.D1 = cell(dim,1); obj.D2 = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 obj.D2{1} = kron(D2{1},I{2}); obj.D2{2} = kron(I{1},D2{2}); % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % Differentiation matrix D (without SAT) D2 = obj.D2; D = sparse(m_tot,m_tot); for j = 1:dim D = D + a*1i*D2{j}; end obj.D = D; %=========================================% % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; obj.a = a; obj.e_w = obj.e_l{1}; obj.e_e = obj.e_r{1}; obj.e_s = obj.e_l{2}; obj.e_n = obj.e_r{2}; obj.d_w = obj.d1_l{1}; obj.d_e = obj.d1_r{1}; obj.d_s = obj.d1_l{2}; obj.d_n = obj.d1_r{2}; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','Neumann'); default_arg('parameter', []); % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries nj = obj.getBoundarySign(boundary); [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); H_gamma = obj.getBoundaryQuadrature(boundary); Hi = obj.Hi; a = e'*obj.a*e; switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} closure = nj*Hi*d*a*1i*H_gamma*(e' ); penalty = -nj*Hi*d*a*1i*H_gamma; % Free boundary condition case {'N','n','neumann','Neumann'} closure = -nj*Hi*e*a*1i*H_gamma*(d' ); penalty = nj*Hi*e*a*1i*H_gamma; % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end % type Struct that specifies the interface coupling. % Fields: % -- interpolation: type of interpolation, default 'none' function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) defaultType.interpolation = 'none'; default_struct('type', defaultType); switch type.interpolation case {'none', ''} [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); case {'op','OP'} [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); otherwise error('Unknown type of interpolation: %s ', type.interpolation); end end function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Get boundary operators [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); H_gamma = obj.getBoundaryQuadrature(boundary); Hi = obj.Hi; a = obj.a; % Get outward unit normal component n = obj.getBoundarySign(boundary); Hi = obj.Hi; sigma = -n*1i*a/2; tau = -n*(1i*a)'/2; closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d'; penalty = -tau*Hi*d*H_gamma*e_neighbour' ... -sigma*Hi*e*H_gamma*d_neighbour'; end function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) % User can request special interpolation operators by specifying type.interpOpSet default_field(type, 'interpOpSet', @sbp.InterpOpsOP); interpOpSet = type.interpOpSet; % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); H_gamma = obj.getBoundaryQuadrature(boundary); Hi = obj.Hi; a = obj.a; % Get outward unit normal component n = obj.getBoundarySign(boundary); % Find the number of grid points along the interface m_u = size(e_u, 2); m_v = size(e_v, 2); % Build interpolation operators intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); Iu2v = intOps.Iu2v; Iv2u = intOps.Iv2u; sigma = -n*1i*a/2; tau = -n*(1i*a)'/2; closure = tau*Hi*d_u*H_gamma*e_u' + sigma*Hi*e_u*H_gamma*d_u'; penalty = -tau*Hi*d_u*H_gamma*Iv2u.good*e_v' ... -sigma*Hi*e_u*H_gamma*Iv2u.bad*d_v'; end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'w' e = obj.e_w; case 'e' e = obj.e_e; case 's' e = obj.e_s; case 'n' e = obj.e_n; end varargout{i} = e; case 'd' switch boundary case 'w' d = obj.d_w; case 'e' d = obj.d_e; case 's' d = obj.d_s; case 'n' d = obj.d_n; end varargout{i} = d; end end end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case 'w' H_b = obj.H_boundary{1}; case 'e' H_b = obj.H_boundary{1}; case 's' H_b = obj.H_boundary{2}; case 'n' H_b = obj.H_boundary{2}; end end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'w', 'e', 's', 'n'}) switch boundary case {'e','n'} s = 1; case {'w','s'} s = -1; end end function N = size(obj) N = prod(obj.m); end end end