view +scheme/Laplace1d.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 33c378e508d2
children
line wrap: on
line source

classdef Laplace1d < scheme.Scheme
    properties
        grid
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        H % Discrete norm
        M % Derivative norm
        a

        D2
        Hi
        e_l
        e_r
        d_l
        d_r
        gamm
    end

    methods
        function obj = Laplace1d(grid, order, a)
            default_arg('a', 1);

            assertType(grid, 'grid.Cartesian');

            ops = sbp.D2Standard(grid.size(), grid.lim{1}, order);

            obj.D2 = sparse(ops.D2);
            obj.H =  sparse(ops.H);
            obj.Hi = sparse(ops.HI);
            obj.M =  sparse(ops.M);
            obj.e_l = sparse(ops.e_l);
            obj.e_r = sparse(ops.e_r);
            obj.d_l = -sparse(ops.d1_l);
            obj.d_r = sparse(ops.d1_r);


            obj.grid = grid;
            obj.order = order;

            obj.a = a;
            obj.D = a*obj.D2;

            obj.gamm = grid.h*ops.borrowing.M.S;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','neumann');
            default_arg('data',0);

            e = obj.getBoundaryOperator('e', boundary);
            d = obj.getBoundaryOperator('d', boundary);
            s = obj.getBoundarySign(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    tuning = 1.1;
                    tau1 = -tuning/obj.gamm;
                    tau2 =  1;

                    tau = tau1*e + tau2*d;

                    closure = obj.a*obj.Hi*tau*e';
                    penalty = -obj.a*obj.Hi*tau;

                % Neumann boundary condition
                case {'N','n','neumann'}
                    tau = -e;

                    closure = obj.a*obj.Hi*tau*d';
                    penalty = -obj.a*obj.Hi*tau;

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            e_u = obj.getBoundaryOperator('e', boundary);
            d_u = obj.getBoundaryOperator('d', boundary);
            s_u = obj.getBoundarySign(boundary);

            e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
            d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary);
            s_v = neighbour_scheme.getBoundarySign(neighbour_boundary);

            a_u = obj.a;
            a_v = neighbour_scheme.a;

            gamm_u = obj.gamm;
            gamm_v = neighbour_scheme.gamm;

            tuning = 1.1;

            tau1 = -1/4*(a_u/gamm_u + a_v/gamm_v) * tuning;
            tau2 = 1/2*a_u;
            sig1 = -1/2;
            sig2 = 0;

            tau = tau1*e_u + tau2*d_u;
            sig = sig1*e_u + sig2*d_u;

            closure = obj.Hi*( tau*e_u' + sig*a_u*d_u');
            penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v');
        end

        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string
        % boundary  -- string
        function o = getBoundaryOperator(obj, op, boundary)
            assertIsMember(op, {'e', 'd'})
            assertIsMember(boundary, {'l', 'r'})

            o = obj.([op, '_', boundary]);
        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        % Note: for 1d diffOps, the boundary quadrature is the scalar 1.
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            H_b = 1;
        end

        % Returns the boundary sign. The right boundary is considered the positive boundary
        % boundary -- string
        function s = getBoundarySign(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            switch boundary
                case {'r'}
                    s = 1;
                case {'l'}
                    s = -1;
            end
        end

        function N = size(obj)
            N = obj.grid.size();
        end

    end
end