Mercurial > repos > public > sbplib
view +scheme/Euler1d.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 0c504a21432d |
children |
line wrap: on
line source
classdef Euler1d < scheme.Scheme properties m % Number of points in each direction, possibly a vector N % Number of points total h % Grid spacing u % Grid values x % Values of x and y for each order % Order accuracy for the approximation D % non-stabalized scheme operator M % Derivative norm gamma H % Discrete norm Hi e_l, e_r, e_L, e_R; end properties (Constant) SUBSONIC_INFLOW = 1; SUBSONIC_OUTFLOW = -1; NO_FLOW = 0; SUPERSONIC_INFLOW = 2; SUPERSONIC_OUTFLOW = -2; end methods function obj = Euler1d(m,xlim,order,gama,opsGen,do_upwind) default_arg('opsGen',@sbp.D2Standard); default_arg('gama', 1.4); default_arg('do_upwind', false); gamma = gama; [x, h] = util.get_grid(xlim{:},m); if do_upwind ops = sbp.D1Upwind(m,xlim,order); Dp = ops.Dp; Dm = ops.Dm; D1 = (Dp + Dm)/2; Ddisp = (Dp - Dm)/2; else ops = opsGen(m,xlim,order); printExpr('issparse(ops.D1)'); D1 = ops.D1; end H = sparse(ops.H); Hi = sparse(ops.HI); e_l = sparse(ops.e_l); e_r = sparse(ops.e_r); I_x = speye(m); I_3 = speye(3); D1 = kr(D1, I_3); if do_upwind Ddisp = kr(Ddisp,I_3); end % Norms obj.H = kr(H,I_3); obj.Hi = kr(Hi,I_3); % Boundary operators obj.e_l = e_l; obj.e_r = e_r; obj.e_L = kr(e_l,I_3); obj.e_R = kr(e_r,I_3); obj.m = m; obj.h = h; obj.order = order; % Man har Q_t+F_x=0 i 1D Euler, där % q=[rho, rho*u, e]^T % F=[rho*u, rho*u^2+p, (e+p)*u] ^T % p=(gamma-1)*(e-rho*u^2/2); %Solving on form q_t + F_x = 0 function o = Fx(q) Q = reshape(q,3,m); o = reshape(obj.F(Q),3*m,1); o = D1*o; end function o = Fx_disp(q) Q = reshape(q,3,m); f = reshape(obj.F(Q),3*m,1); c = obj.c(Q); lambda_max = c+abs(Q(2,:)./Q(1,:)); % lambda_max = max(lambda_max); lamb_Q(1,:) = lambda_max.*Q(1,:); lamb_Q(2,:) = lambda_max.*Q(2,:); lamb_Q(3,:) = lambda_max.*Q(3,:); lamb_q = reshape(lamb_Q,3*m, 1); o = -D1*f + Ddisp*lamb_q; end if do_upwind obj.D = @Fx_disp; else obj.D = @(q)-Fx(q); end obj.u = x; obj.x = kr(x,ones(3,1)); obj.gamma = gamma; end % Flux function function o = F(obj, Q) % Flux: f = [q2; q2.^2/q1 + p(q); (q3+p(q))*q2/q1]; p = obj.p(Q); o = [Q(2,:); Q(2,:).^2./Q(1,:) + p; (Q(3,:)+p).*Q(2,:)./Q(1,:)]; end % Equation of state function o = p(obj, Q) % Pressure p = (gamma-1)*(q3-q2.^2/q1/2) o = (obj.gamma-1)*( Q(3,:)-1/2*Q(2,:).^2./Q(1,:) ); end % Speed of sound function o = c(obj, Q) % Speed of light c = sqrt(obj.gamma*p/rho); o = sqrt(obj.gamma*obj.p(Q)./Q(1,:)); end % Eigen value matrix function o = Lambda(obj, q) u = q(2)/q(1); c = obj.c(q); L = [u, u+c, u-c]; o = diag(L); end % Diagonalization transformation function o = T(obj, q) % T is the transformation such that A = T*Lambda*inv(T) % where Lambda=diag(u, u+c, u-c) rho = q(1); u = q(2)/q(1); e = q(3); gamma = obj.gamma; c = sqrt(gamma*obj.p(q)/rho); sqrt2gamm = sqrt(2*(gamma-1)); o = [ sqrt2gamm*rho , rho , rho ; sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ; sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c ; ]; % Devide columns by stuff to get rid of extra comp? end function fs = flowStateL(obj, q) q_l = obj.e_L'*q; c = obj.c(q_l); v = q_l(2,:)/q_l(1,:); if v > c fs = scheme.Euler1d.SUPERSONIC_INFLOW; elseif v > 0 fs = scheme.Euler1d.SUBSONIC_INFLOW; elseif v > -c fs = scheme.Euler1d.SUBSONIC_OUTFLOW; else fs = scheme.Euler1d.SUPERSONIC_OUTFLOW; end end % returns positiv values for inlfow, negative for outflow. % +-1 for subsonic function fs = flowStateR(obj, q) q_r = obj.e_R'*q; c = obj.c(q_r); v = q_r(2,:)/q_r(1,:); if v < -c fs = scheme.Euler1d.SUPERSONIC_INFLOW; elseif v < 0 fs = scheme.Euler1d.SUBSONIC_INFLOW; elseif v < c fs = scheme.Euler1d.SUBSONIC_OUTFLOW; else fs = scheme.Euler1d.SUPERSONIC_OUTFLOW; end end % Enforces the boundary conditions % w+ = R*w- + g(t) function closure = boundary_condition(obj,boundary, type, varargin) [e_s, e_S] = obj.getBoundaryOperator({'e', 'E'}, boundary); s = obj.getBoundarySign(boundary); % Boundary condition on form % w_in = R*w_out + g, where g is data switch type case 'wall' closure = obj.boundary_condition_wall(boundary); case 'inflow' closure = obj.boundary_condition_inflow(boundary,varargin{:}); case 'outflow' closure = obj.boundary_condition_outflow(boundary,varargin{:}); case 'inflow_rho' closure = obj.boundary_condition_inflow_rho(boundary,varargin{:}); case 'outflow_rho' closure = obj.boundary_condition_outflow_rho(boundary,varargin{:}); case 'char' closure = obj.boundary_condition_char(boundary,varargin{:}); otherwise error('Unsupported bc type: %s', type); end end % Sets the boundary condition Lq = g, where % L = L(rho, u, e) % p_in are the indecies of the ingoing characteristics. % % Returns closure(q,g) function closure = boundary_condition_L(obj, boundary, L_fun, p_in) [e_s, e_S] = obj.getBoundaryOperator({'e', 'E'}, boundary); s = obj.getBoundarySign(boundary); p_ot = 1:3; p_ot(p_in) = []; p = [p_in, p_ot]; % Permutation to sort pt(p) = 1:length(p); % Inverse permutation function o = closure_fun(q,g) % Extract solution at the boundary q_s = e_S'*q; rho = q_s(1); u = q_s(2)/rho; e = q_s(3); c = obj.c(q_s); % Calculate transformation matrix T = obj.T(q_s); Tin = T(:,p_in); Tot = T(:,p_ot); % Calculate eigen value matrix Lambda = obj.Lambda(q_s); % Setup the penalty parameter tau1 = -2*abs(Lambda(p_in,p_in)); tau2 = zeros(length(p_ot),length(p_in)); % Penalty only on ingoing char. tauHat = [tau1; tau2]; tau = e_S*sparse(T*tauHat(pt,:)); L = L_fun(rho,u,e); o = 1/2*obj.Hi * tau * inv(L*Tin)*(L*q_s - g); end closure = @closure_fun; end % Return closure(q,g) function closure = boundary_condition_char(obj,boundary) [e_s, e_S] = obj.getBoundaryOperator({'e', 'E'}, boundary); s = obj.getBoundarySign(boundary); function o = closure_fun(q, w_data) q_s = e_S'*q; rho = q_s(1); u = q_s(2)/rho; e = q_s(3); c = obj.c(q_s); Lambda = [u, u+c, u-c]; p_in = find(s*Lambda < 0); p_ot = 1:3; p_ot(p_in) = []; p = [p_in p_ot]; pt(p) = 1:length(p); T = obj.T(q_s); tau1 = -2*diag(abs(Lambda(p_in))); tau2 = zeros(length(p_ot),length(p_in)); % Penalty only on ingoing char. tauHat = [tau1; tau2]; tau = -s*e_S*sparse(T*tauHat(pt,:)); w_s = inv(T)*q_s; w_in = w_s(p_in); w_in_data = w_data(p_in); o = 1/2*obj.Hi * tau * (w_in - w_in_data); end closure = @closure_fun; end % Return closure(q,[v; p]) function closure = boundary_condition_inflow(obj, boundary) s = obj.getBoundarySign(boundary); switch s case -1 p_in = [1 2]; case 1 p_in = [1 3]; end a = obj.gamma - 1; L = @(rho,u,~)[ 0 1/rho 0; %v 0 -1/2*u*a a; %p ]; closure_raw = boundary_condition_L(obj, boundary, L, g, p_in); closure = @(q,p,v) closure_raw(q,[v; p]); end % Return closure(q, p) function closure = boundary_condition_outflow(obj, boundary) s = obj.getBoundarySign(boundary); switch s case -1 p_in = 2; case 1 p_in = 3; end a = obj.gamma -1; L = @(~,u,~)a*[0 -1/2*u 1]; closure = boundary_condition_L(obj, boundary, L, p_in); end % Return closure(q,[v; rho]) function closure = boundary_condition_inflow_rho(obj, boundary) s = obj.getBoundarySign(boundary); switch s case -1 p_in = [1 2]; case 1 p_in = [1 3]; end a = obj.gamma - 1; L = @(rho,~,~)[ 0 1/rho 0; 1 0 0; ]; closure = boundary_condition_L(obj, boundary, L, p_in); end % Return closure(q,rho) function closure = boundary_condition_outflow_rho(obj, boundary) s = obj.getBoundarySign(boundary); switch s case -1 p_in = 2; case 1 p_in = 3; end L = @(~,~,~)[1 0 0]; closure = boundary_condition_L(obj, boundary, L, p_in); end % Set wall boundary condition v = 0. function closure = boundary_condition_wall(obj,boundary) [e_s, e_S] = obj.getBoundaryOperator({'e', 'E'}, boundary); s = obj.getBoundarySign(boundary); % Vill vi sätta penalty på karateristikan som är nära noll också eller vill % vi låta den vara fri? switch s case -1 p_in = 2; p_zero = 1; p_ot = 3; case 1 p_in = 3; p_zero = 1; p_ot = 2; otherwise error(); end p = [p_in, p_zero, p_ot]; % Permutation to sort pt(p) = 1:length(p); % Inverse permutation function o = closure_fun(q) q_s = e_S'*q; rho = q_s(1); u = q_s(2)/rho; c = obj.c(q_s); T = obj.T(q_s); R = -(u-c)/(u+c); % l = [u, u+c, u-c]; % p_in = find(s*l <= 0); % p_ot = find(s*l > 0); tau1 = -2*c; tau2 = [0; 0]; % Penalty only on ingoing char. % Lambda_in = diag(abs(l(p_in))); % Lambda_ot = diag(abs(l(p_ot))); tauHat = [tau1; tau2]; tau = -s*e_S*sparse(T*tauHat(pt)); w_s = inv(T)*q_s; % w_s = T\q_s; % w_s = Tinv * q_s; % Med analytisk matris w_in = w_s(p_in); w_ot = w_s(p_ot); o = 1/2*obj.Hi * tau * (w_in - R*w_ot); end closure = @closure_fun; end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) error('NOT DONE') % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); tuning = 2; alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; tau4 = s_u*alpha_u/2; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'l' e = obj.e_l; case 'r' e = obj.e_r; otherwise error('No such boundary: boundary = %s',boundary); end varargout{i} = e; case 'E' switch boundary case 'l' E = obj.e_L; case 'r' E = obj.e_R; otherwise error('No such boundary: boundary = %s',boundary); end varargout{i} = E; end end end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) switch boundary case {'r'} s = 1; case {'l'} s = -1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = prod(obj.m); end end end