view +scheme/Beam.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 0c504a21432d
children
line wrap: on
line source

classdef Beam < scheme.Scheme
    properties
        order % Order accuracy for the approximation
        grid

        D % non-stabalized scheme operator
        alpha

        h
        H % Discrete norm
        Hi

        e_l,  e_r
        d1_l, d1_r
        d2_l, d2_r
        d3_l, d3_r
        gamm
        delt
        alphaII
        alphaIII

        opt % TODO: Get rid of this and use the interface type instead
    end

    methods
        function obj = Beam(grid, order, alpha, opsGen, opt)
            default_arg('alpha', -1);

            % default_arg('opsGen', @sbp.D4);
            default_arg('opsGen', @sbp.D4Variable); % Supposed to be better

            opt_default.interface_l.tuning = 1.1;
            opt_default.interface_l.tau = [];
            opt_default.interface_l.sig = [];
            opt_default.interface_r.tuning = 1.1;
            opt_default.interface_r.tau = [];
            opt_default.interface_r.sig = [];
            default_struct('opt', opt_default);

            if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1
                error('Grid must be 1d cartesian');
            end

            obj.grid = grid;
            obj.order = order;
            obj.alpha = alpha;

            m = grid.m;
            h = grid.scaling();

            x_lim = {grid.x{1}(1), grid.x{1}(end)};
            ops = opsGen(m, x_lim, order);

            D4       = ops.D4;
            obj.H    = ops.H;
            obj.Hi   = ops.HI;
            obj.e_l  = ops.e_l;
            obj.e_r  = ops.e_r;
            obj.d1_l = ops.d1_l;
            obj.d1_r = ops.d1_r;
            obj.d2_l = ops.d2_l;
            obj.d2_r = ops.d2_r;
            obj.d3_l = ops.d3_l;
            obj.d3_r = ops.d3_r;

            obj.D = alpha*D4;

            alphaII  = ops.borrowing.N.S2/2;
            alphaIII = ops.borrowing.N.S3/2;

            obj.gamm = h*alphaII;
            obj.delt = h^3*alphaIII;
            obj.alphaII = alphaII;
            obj.alphaIII = alphaIII;
            obj.h = h;
            obj.opt = opt;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type)
            default_arg('type','dn');

            e  = obj.getBoundaryOperator('e',  boundary);
            d1 = obj.getBoundaryOperator('d1', boundary);
            d2 = obj.getBoundaryOperator('d2', boundary);
            d3 = obj.getBoundaryOperator('d3', boundary);
            s = obj.getBoundarySign(boundary);
            gamm = obj.gamm;
            delt = obj.delt;


            % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ...

            switch type
                case {'dn', 'clamped'} % Dirichlet-neumann boundary condition
                    alpha = obj.alpha;

                    % tau1 < -alpha^2/gamma
                    % tuning = 2;
                    tuning = 1.1;

                    tau1 = tuning * alpha/delt;
                    tau4 = s*alpha;

                    sig2 = tuning * alpha/gamm;
                    sig3 = -s*alpha;

                    tau = tau1*e+tau4*d3;
                    sig = sig2*d1+sig3*d2;

                    closure = obj.Hi*(tau*e' + sig*d1');

                    penalty{1} = -obj.Hi*tau;
                    penalty{2} = -obj.Hi*sig;


                case {'free'}
                    a = obj.alpha;

                    tau =  s*a*d1;
                    sig = -s*a*e;

                    closure = obj.Hi*(tau*d2' + sig*d3');
                    penalty{1} = -obj.Hi*tau;
                    penalty{2} = -obj.Hi*sig;

                case 'e'
                    alpha = obj.alpha;
                    tuning = 1.1;

                    tau1 = tuning * alpha/delt;
                    tau4 = s*alpha;

                    tau = tau1*e+tau4*d3;

                    closure = obj.Hi*tau*e';
                    penalty = -obj.Hi*tau;
                case 'd1'
                    alpha = obj.alpha;

                    tuning = 1.1;

                    sig2 = tuning * alpha/gamm;
                    sig3 = -s*alpha;

                    sig = sig2*d1+sig3*d2;

                    closure = obj.Hi*sig*d1';
                    penalty = -obj.Hi*sig;

                case 'd2'
                    a = obj.alpha;

                    tau =  s*a*d1;

                    closure = obj.Hi*tau*d2';
                    penalty = -obj.Hi*tau;
                case 'd3'
                    a = obj.alpha;

                    sig = -s*a*e;

                    closure = obj.Hi*sig*d3';
                    penalty = -obj.Hi*sig;

                otherwise % Unknown, boundary condition
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            e_u  = obj.getBoundaryOperator('e',  boundary);
            d1_u = obj.getBoundaryOperator('d1', boundary);
            d2_u = obj.getBoundaryOperator('d2', boundary);
            d3_u = obj.getBoundaryOperator('d3', boundary);
            s_u = obj.getBoundarySign(boundary);

            e_v  = neighbour_scheme.getBoundaryOperator('e',  neighbour_boundary);
            d1_v = neighbour_scheme.getBoundaryOperator('d1', neighbour_boundary);
            d2_v = neighbour_scheme.getBoundaryOperator('d2', neighbour_boundary);
            d3_v = neighbour_scheme.getBoundaryOperator('d3', neighbour_boundary);
            s_v = neighbour_scheme.getBoundarySign(neighbour_boundary);

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            switch boundary
                case 'l'
                    interface_opt = obj.opt.interface_l;
                case 'r'
                    interface_opt = obj.opt.interface_r;
            end


            if isempty(interface_opt.tau) && isempty(interface_opt.sig)
                gamm_u = obj.gamm;
                delt_u = obj.delt;

                gamm_v = neighbour_scheme.gamm;
                delt_v = neighbour_scheme.delt;

                tuning = interface_opt.tuning;

                tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
                sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
            else
                h_u = obj.h;
                h_v = neighbour_scheme.h;

                switch neighbour_boundary
                    case 'l'
                        neighbour_interface_opt = neighbour_scheme.opt.interface_l;
                    case 'r'
                        neighbour_interface_opt = neighbour_scheme.opt.interface_r;
                end

                tau_u = interface_opt.tau;
                sig_u = interface_opt.sig;
                tau_v = neighbour_interface_opt.tau;
                sig_v = neighbour_interface_opt.sig;

                tau1 = tau_u/h_u^3 + tau_v/h_v^3;
                sig2 = sig_u/h_u   + sig_v/h_v;
            end

            tau4 = s_u*alpha_u/2;
            sig3 = -s_u*alpha_u/2;
            phi2 = s_u*1/2;
            psi1 = -s_u*1/2;

            tau = tau1*e_u  +                     tau4*d3_u;
            sig =           sig2*d1_u + sig3*d2_u          ;
            phi =           phi2*d1_u                      ;
            psi = psi1*e_u                                 ;

            closure =  obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
            penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
        end

        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string
        % boundary  -- string
        function o = getBoundaryOperator(obj, op, boundary)
            assertIsMember(op, {'e', 'd1', 'd2', 'd3'})
            assertIsMember(boundary, {'l', 'r'})

            o = obj.([op, '_', boundary]);
        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        % Note: for 1d diffOps, the boundary quadrature is the scalar 1.
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            H_b = 1;
        end

        % Returns the boundary sign. The right boundary is considered the positive boundary
        % boundary -- string
        function s = getBoundarySign(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            switch boundary
                case {'r'}
                    s = 1;
                case {'l'}
                    s = -1;
            end
        end

        function N = size(obj)
            N = obj.grid.N;
        end

    end
end