Mercurial > repos > public > sbplib
view +sbp/D2VariableCompatible.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
| author | Martin Almquist <malmquist@stanford.edu> |
|---|---|
| date | Fri, 16 Aug 2019 14:30:28 -0700 |
| parents | |
| children | a3d9567d9004 |
line wrap: on
line source
classdef D2VariableCompatible < sbp.OpSet properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator D2 % SBP operator for second derivative M % Norm matrix, second derivative d1_l % Left boundary first derivative d1_r % Right boundary first derivative m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D2VariableCompatible(m,lim,order) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; obj.h = L/(m-1); obj.x = linspace(x_l,x_r,m)'; switch order case 6 [obj.H, obj.HI, obj.D1, D2, ... ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,... d1_l, d1_r] = ... sbp.implementations.d4_variable_6(m, obj.h); case 4 [obj.H, obj.HI, obj.D1, D2, obj.e_l,... obj.e_r, d1_l, d1_r] = ... sbp.implementations.d2_variable_4(m,obj.h); case 2 [obj.H, obj.HI, obj.D1, D2, obj.e_l,... obj.e_r, d1_l, d1_r] = ... sbp.implementations.d2_variable_2(m,obj.h); otherwise error('Invalid operator order %d.',order); end obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h, obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M obj.borrowing.R.delta_D = inf; % Because delta_D is zero, one can borrow infinitely much. % This sets penalties of the form 1/borrowing to 0, which is % the desired behaviour. obj.m = m; obj.M = []; D1 = obj.D1; e_r = obj.e_r; e_l = obj.e_l; % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T); % Replace d1' by e'*D1 in D2. D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ... + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1); obj.D2 = D2_compatible; obj.d1_l = (e_l'*D1)'; obj.d1_r = (e_r'*D1)'; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end
