view +sbp/D2VariableCompatible.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents
children a3d9567d9004
line wrap: on
line source

classdef D2VariableCompatible < sbp.OpSet
    properties
        D1 % SBP operator approximating first derivative
        H % Norm matrix
        HI % H^-1
        Q % Skew-symmetric matrix
        e_l % Left boundary operator
        e_r % Right boundary operator
        D2 % SBP operator for second derivative
        M % Norm matrix, second derivative
        d1_l % Left boundary first derivative
        d1_r % Right boundary first derivative
        m % Number of grid points.
        h % Step size
        x % grid
        borrowing % Struct with borrowing limits for different norm matrices
    end

    methods
        function obj = D2VariableCompatible(m,lim,order)

            x_l = lim{1};
            x_r = lim{2};
            L = x_r-x_l;
            obj.h = L/(m-1);
            obj.x = linspace(x_l,x_r,m)';

            switch order

                case 6

                    [obj.H, obj.HI, obj.D1, D2, ...
                    ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,...
                     d1_l, d1_r] = ...
                        sbp.implementations.d4_variable_6(m, obj.h);

                case 4
                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
                        obj.e_r, d1_l, d1_r] = ...
                        sbp.implementations.d2_variable_4(m,obj.h);
                case 2
                    [obj.H, obj.HI, obj.D1, D2, obj.e_l,...
                        obj.e_r, d1_l, d1_r] = ...
                        sbp.implementations.d2_variable_2(m,obj.h);

                otherwise
                    error('Invalid operator order %d.',order);
            end
            obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h,
            obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M
            obj.borrowing.R.delta_D = inf; % Because delta_D is zero, one can borrow infinitely much.
                                           % This sets penalties of the form 1/borrowing to 0, which is
                                           % the desired behaviour.
            obj.m = m;
            obj.M = [];

            D1 = obj.D1;
            e_r = obj.e_r;
            e_l = obj.e_l;

            % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T);
            % Replace d1' by e'*D1 in D2.
            D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ...
                                       + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1);

            obj.D2 = D2_compatible;
            obj.d1_l = (e_l'*D1)';
            obj.d1_r = (e_r'*D1)';

        end
        function str = string(obj)
            str = [class(obj) '_' num2str(obj.order)];
        end
    end

end