Mercurial > repos > public > sbplib
view +sbp/D2VariableCompatible.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | |
children | a3d9567d9004 |
line wrap: on
line source
classdef D2VariableCompatible < sbp.OpSet properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator D2 % SBP operator for second derivative M % Norm matrix, second derivative d1_l % Left boundary first derivative d1_r % Right boundary first derivative m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D2VariableCompatible(m,lim,order) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; obj.h = L/(m-1); obj.x = linspace(x_l,x_r,m)'; switch order case 6 [obj.H, obj.HI, obj.D1, D2, ... ~, obj.e_l, obj.e_r, ~, ~, ~, ~, ~,... d1_l, d1_r] = ... sbp.implementations.d4_variable_6(m, obj.h); case 4 [obj.H, obj.HI, obj.D1, D2, obj.e_l,... obj.e_r, d1_l, d1_r] = ... sbp.implementations.d2_variable_4(m,obj.h); case 2 [obj.H, obj.HI, obj.D1, D2, obj.e_l,... obj.e_r, d1_l, d1_r] = ... sbp.implementations.d2_variable_2(m,obj.h); otherwise error('Invalid operator order %d.',order); end obj.borrowing.H11 = obj.H(1,1)/obj.h; % First element in H/h, obj.borrowing.M.d1 = obj.H(1,1)/obj.h; % First element in H/h is borrowing also for M obj.borrowing.R.delta_D = inf; % Because delta_D is zero, one can borrow infinitely much. % This sets penalties of the form 1/borrowing to 0, which is % the desired behaviour. obj.m = m; obj.M = []; D1 = obj.D1; e_r = obj.e_r; e_l = obj.e_l; % D2 = Hinv * (-M + br*er*d1r^T - bl*el*d1l^T); % Replace d1' by e'*D1 in D2. D2_compatible = @(b) D2(b) - obj.HI*(b(m)*e_r*d1_r' - b(m)*e_r*e_r'*D1) ... + obj.HI*(b(1)*e_l*d1_l' - b(1)*e_l*e_l'*D1); obj.D2 = D2_compatible; obj.d1_l = (e_l'*D1)'; obj.d1_r = (e_r'*D1)'; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end