Mercurial > repos > public > sbplib
view +sbp/D1Nonequidistant.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | bc78157c89cb |
children | 4cb627c7fb90 |
line wrap: on
line source
classdef D1Nonequidistant < sbp.OpSet properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Nonequidistant(m,lim,order,option) default_arg('option','Accurate'); % 'Accurate' operators are optimized for accuracy % 'Minimal' operators have the smallest possible boundary % closure x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch option case {'Accurate','accurate','A'} if order == 4 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_4(m,L); elseif order == 6 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_6(m,L); elseif order == 8 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_8(m,L); elseif order == 10 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_10(m,L); elseif order == 12 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_12(m,L); else error('Invalid operator order %d.',order); end case {'Minimal','minimal','M'} if order == 4 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_4(m,L); elseif order == 6 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_6(m,L); elseif order == 8 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_8(m,L); elseif order == 10 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_10(m,L); elseif order == 12 [obj.D1,obj.H,obj.x,obj.h] = ... sbp.implementations.d1_noneq_minimal_12(m,L); else error('Invalid operator order %d.',order); end end obj.x = obj.x + x_l; obj.e_l = sparse(m,1); obj.e_r = sparse(m,1); obj.e_l(1) = 1; obj.e_r(m) = 1; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; obj.borrowing = []; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end