Mercurial > repos > public > sbplib
view +sbp/D1Gauss.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | e1d11b6a68d8 |
children |
line wrap: on
line source
classdef D1Gauss < sbp.OpSet % Diagonal-norm SBP operators based on the Gauss quadrature formula % with m nodes, which is of degree 2m-1. Hence, The operator D1 is % accurate of order m. properties D1 % SBP operator approximating first derivative H % Norm matrix HI % H^-1 Q % Skew-symmetric matrix e_l % Left boundary operator e_r % Right boundary operator m % Number of grid points. h % Step size x % grid borrowing % Struct with borrowing limits for different norm matrices end methods function obj = D1Gauss(m,lim) x_l = lim{1}; x_r = lim{2}; L = x_r-x_l; switch m case 4 [obj.D1,obj.H,obj.x,obj.h,obj.e_l,obj.e_r] = ... sbp.implementations.d1_gauss_4(L); otherwise error('Invalid number of points: %d.', m); end obj.x = obj.x + x_l; obj.HI = inv(obj.H); obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; obj.borrowing = []; end function str = string(obj) str = [class(obj) '_' num2str(obj.order)]; end end end