Mercurial > repos > public > sbplib
view +sbp/+implementations/d4_variable_2.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 43d02533bea3 |
children |
line wrap: on
line source
% Returns D2 as a function handle function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 4:de ordn. SBP Finita differens %%% %%% operatorer framtagna av Ken Mattsson %%% %%% %%% %%% 6 randpunkter, diagonal norm %%% %%% %%% %%% Datum: 2013-11-11 %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BP = 2; if(m < 2*BP) error('Operator requires at least %d grid points', 2*BP); end % Norm Hv = ones(m,1); Hv(1) = 1/2; Hv(m) = 1/2; Hv = h*Hv; H = spdiag(Hv, 0); HI = spdiag(1./Hv, 0); % Boundary operators e_l = sparse(m,1); e_l(1) = 1; e_r = rot90(e_l, 2); d1_l = sparse(m,1); d1_l(1:3) = 1/h*[-3/2 2 -1/2]; d1_r = -rot90(d1_l, 2); d2_l = sparse(m,1); d2_l(1:3) = 1/h^2*[1 -2 1]; d2_r = rot90(d2_l, 2); d3_l = sparse(m,1); d3_l(1:4) = 1/h^3*[-1 3 -3 1]; d3_r = -rot90(d3_l, 2); % First derivative SBP operator, 1st order accurate at first 6 boundary points stencil = [-1/2, 0, 1/2]; diags = [-1 0 1]; Q = stripeMatrix(stencil, diags, m); D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); % Second derivative, 1st order accurate at first boundary points M = sparse(m,m); scheme_width = 3; scheme_radius = (scheme_width-1)/2; r = (1+scheme_radius):(m-scheme_radius); function D2 = D2_fun(c) Mm1 = -c(r-1)/2 - c(r)/2; M0 = c(r-1)/2 + c(r) + c(r+1)/2; Mp1 = -c(r)/2 - c(r+1)/2; M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; M = 1/h*M; D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r'); end D2 = @D2_fun; % Fourth derivative, 0th order accurate at first 6 boundary points stencil = [1, -4, 6, -4, 1]; diags = -2:2; M4 = stripeMatrix(stencil, diags, m); M4_U = [ 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; ]; M4(1:4,1:4) = M4_U; M4(m-3:m,m-3:m) = rot90(M4_U, 2); M4 = 1/h^3*M4; D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); end