view +sbp/+implementations/d4_variable_2.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 43d02533bea3
children
line wrap: on
line source

% Returns D2 as a function handle
function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 4:de ordn. SBP Finita differens         %%%
    %%% operatorer framtagna av Ken Mattsson    %%%
    %%%                                         %%%
    %%% 6 randpunkter, diagonal norm            %%%
    %%%                                         %%%
    %%% Datum: 2013-11-11                       %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    BP = 2;
    if(m < 2*BP)
        error('Operator requires at least %d grid points', 2*BP);
    end

    % Norm
    Hv = ones(m,1);
    Hv(1) = 1/2;
    Hv(m) = 1/2;
    Hv = h*Hv;
    H = spdiag(Hv, 0);
    HI = spdiag(1./Hv, 0);

    % Boundary operators
    e_l = sparse(m,1);
    e_l(1) = 1;
    e_r = rot90(e_l, 2);

    d1_l = sparse(m,1);
    d1_l(1:3) = 1/h*[-3/2 2 -1/2];
    d1_r = -rot90(d1_l, 2);

    d2_l = sparse(m,1);
    d2_l(1:3) = 1/h^2*[1 -2 1];
    d2_r = rot90(d2_l, 2);

    d3_l = sparse(m,1);
    d3_l(1:4) = 1/h^3*[-1 3 -3 1];
    d3_r = -rot90(d3_l, 2);


    % First derivative SBP operator, 1st order accurate at first 6 boundary points
    stencil = [-1/2, 0, 1/2];
    diags = [-1 0 1];
    Q = stripeMatrix(stencil, diags, m);

    D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r');

    % Second derivative, 1st order accurate at first boundary points
    M = sparse(m,m);

    scheme_width = 3;
    scheme_radius = (scheme_width-1)/2;
    r = (1+scheme_radius):(m-scheme_radius);

    function D2 = D2_fun(c)
        Mm1 = -c(r-1)/2 - c(r)/2;
        M0  =  c(r-1)/2 + c(r)   + c(r+1)/2;
        Mp1 =            -c(r)/2 - c(r+1)/2;

        M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m);

        M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;];
        M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;];
        M = 1/h*M;

        D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r');
    end
    D2 = @D2_fun;

    % Fourth derivative, 0th order accurate at first 6 boundary points
    stencil = [1, -4, 6, -4, 1];
    diags = -2:2;
    M4 = stripeMatrix(stencil, diags, m);

    M4_U = [
         0.13e2/0.10e2 -0.12e2/0.5e1   0.9e1/0.10e2   0.1e1/0.5e1;
        -0.12e2/0.5e1   0.26e2/0.5e1  -0.16e2/0.5e1   0.2e1/0.5e1;
         0.9e1/0.10e2  -0.16e2/0.5e1   0.47e2/0.10e2 -0.17e2/0.5e1;
         0.1e1/0.5e1    0.2e1/0.5e1   -0.17e2/0.5e1   0.29e2/0.5e1;
    ];

    M4(1:4,1:4) = M4_U;
    M4(m-3:m,m-3:m) = rot90(M4_U, 2);
    M4 = 1/h^3*M4;

    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
end