view +sbp/+implementations/d4_4.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents f7ac3cd6eeaa
children
line wrap: on
line source

function [H, HI, D1, D2, D3, D4, e_1, e_m, M, ...
    M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = d4_4(m,h)


    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%% 4:de ordn. SBP Finita differens         %%%
    %%% operatorer framtagna av Ken Mattsson    %%%
    %%%                                         %%%
    %%% 6 randpunkter, diagonal norm            %%%
    %%%                                         %%%
    %%% Datum: 2013-11-11                       %%%
    %%%                                         %%%
    %%%                                         %%%
    %%% H           (Normen)                    %%%
    %%% D1          (approx f?rsta derivatan)   %%%
    %%% D2          (approx andra derivatan)    %%%
    %%% D3          (approx tredje derivatan)   %%%
    %%% D2          (approx fj?rde derivatan)   %%%
    %%%                                         %%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % M?ste ange antal punkter (m) och stegl?ngd (h)
    % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r
    % vi har 3de och 4de derivator i v?r PDE
    % I annat fall anv?nd de "traditionella" som har noggrannare
    % randsplutningar f?r D1 och D2

    % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm,
    % vilket ?r n?dv?ndigt f?r stabilitet
    
    BP = 6;
    if(m<2*BP)
        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
    end

    H=speye(m,m);
    H_U=[0.35809e5 / 0.100800e6 0 0 0 0 0; 0 0.13297e5 / 0.11200e5 0 0 0 0; 0 0 0.5701e4 / 0.5600e4 0 0 0; 0 0 0 0.45109e5 / 0.50400e5 0 0; 0 0 0 0 0.35191e5 / 0.33600e5 0; 0 0 0 0 0 0.33503e5 / 0.33600e5;];

    H(1:6,1:6)=H_U;
    H(m-5:m,m-5:m)=rot90(H_U,2);
    H=H*h;
    HI=inv(H);


    % First derivative SBP operator, 1st order accurate at first 6 boundary points

%     q2=-1/12;q1=8/12;
%     Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
    e=ones(m,1);
    Q=spdiags([e -8*e 0*e 8*e -e], -2:2, m, m)/12;

    %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2));

    Q_U = [0 0.526249e6 / 0.907200e6 -0.10819e5 / 0.777600e6 -0.50767e5 / 0.907200e6 -0.631e3 / 0.28800e5 0.91e2 / 0.7776e4; -0.526249e6 / 0.907200e6 0 0.1421209e7 / 0.2721600e7 0.16657e5 / 0.201600e6 -0.8467e4 / 0.453600e6 -0.33059e5 / 0.5443200e7; 0.10819e5 / 0.777600e6 -0.1421209e7 / 0.2721600e7 0 0.631187e6 / 0.1360800e7 0.400139e6 / 0.5443200e7 -0.8789e4 / 0.302400e6; 0.50767e5 / 0.907200e6 -0.16657e5 / 0.201600e6 -0.631187e6 / 0.1360800e7 0 0.496403e6 / 0.907200e6 -0.308533e6 / 0.5443200e7; 0.631e3 / 0.28800e5 0.8467e4 / 0.453600e6 -0.400139e6 / 0.5443200e7 -0.496403e6 / 0.907200e6 0 0.1805647e7 / 0.2721600e7; -0.91e2 / 0.7776e4 0.33059e5 / 0.5443200e7 0.8789e4 / 0.302400e6 0.308533e6 / 0.5443200e7 -0.1805647e7 / 0.2721600e7 0;];
    Q(1:6,1:6)=Q_U;
    Q(m-5:m,m-5:m)=rot90(  -Q_U ,2 );

    e_1=sparse(m,1);e_1(1)=1;
    e_m=sparse(m,1);e_m(m)=1;


    D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % Second derivative, 1st order accurate at first 6 boundary points
%     m2=1/12;m1=-16/12;m0=30/12;
%     M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);
    %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0));
    M=-spdiags([-e 16*e -30*e 16*e -e], -2:2, m, m)/12;
    M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;];

    M(1:6,1:6)=M_U;

    M(m-5:m,m-5:m)=rot90(  M_U ,2 );
    M=M/h;

    S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h;
    S_1=sparse(1,m);
    S_1(1:4)=S_U;
    S_m=sparse(1,m);

    S_m(m-3:m)=fliplr(-S_U);

    D2=H\(-M-e_1*S_1+e_m*S_m);


    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



    % Third derivative, 1st order accurate at first 6 boundary points

    q3=-1/8;q2=1;q1=-13/8;
%     Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
    diags   = -3:3;
    stencil = [-q3,-q2,-q1,0,q1,q2,q3];
    Q3 = stripeMatrix(stencil, diags, m);

    %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3));


    Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;];

    Q3(1:6,1:6)=Q3_U;
    Q3(m-5:m,m-5:m)=rot90(  -Q3_U ,2 );
    Q3=Q3/h^2;



    S2_U=[2 -5 4 -1;]/h^2;
    S2_1=sparse(1,m);
    S2_1(1:4)=S2_U;
    S2_m=sparse(1,m);
    S2_m(m-3:m)=fliplr(S2_U);



    D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ;

    % Fourth derivative, 0th order accurate at first 6 boundary points (still
    % yield 4th order convergence if stable: for example u_tt=-u_xxxx

    m3=-1/6;m2=2;m1=-13/2;m0=28/3;
%     M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);
    diags   = -3:3;
    left_stencil = [m3,m2,m1];
    stencil = [left_stencil,m0,fliplr(left_stencil)];
    M4 = stripeMatrix(stencil, diags, m);

    %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0));

    M4_U=[0.4596181e7 / 0.1814400e7 -0.10307743e8 / 0.1814400e7 0.160961e6 / 0.43200e5 -0.535019e6 / 0.907200e6 0.109057e6 / 0.1814400e7 -0.29273e5 / 0.604800e6; -0.10307743e8 / 0.1814400e7 0.8368543e7 / 0.604800e6 -0.9558943e7 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.11351e5 / 0.86400e5 0.204257e6 / 0.1814400e7; 0.160961e6 / 0.43200e5 -0.9558943e7 / 0.907200e6 0.4938581e7 / 0.453600e6 -0.786473e6 / 0.151200e6 0.1141057e7 / 0.907200e6 -0.120619e6 / 0.907200e6; -0.535019e6 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.786473e6 / 0.151200e6 0.3146581e7 / 0.453600e6 -0.4614143e7 / 0.907200e6 0.24587e5 / 0.14400e5; 0.109057e6 / 0.1814400e7 -0.11351e5 / 0.86400e5 0.1141057e7 / 0.907200e6 -0.4614143e7 / 0.907200e6 0.185709e6 / 0.22400e5 -0.11293343e8 / 0.1814400e7; -0.29273e5 / 0.604800e6 0.204257e6 / 0.1814400e7 -0.120619e6 / 0.907200e6 0.24587e5 / 0.14400e5 -0.11293343e8 / 0.1814400e7 0.16787381e8 / 0.1814400e7;];

    M4(1:6,1:6)=M4_U;

    M4(m-5:m,m-5:m)=rot90(  M4_U ,2 );
    M4=M4/h^3;

    S3_U=[-1 3 -3 1;]/h^3;
    S3_1=sparse(1,m);
    S3_1(1:4)=S3_U;
    S3_m=sparse(1,m);
    S3_m(m-3:m)=fliplr(-S3_U);

    D4=H\(M4-e_1*S3_1+e_m*S3_m  + S_1'*S2_1-S_m'*S2_m);


    % L=h*(m-1);
    %
    % x1=linspace(0,L,m)';
    % x2=x1.^2/fac(2);
    % x3=x1.^3/fac(3);
    % x4=x1.^4/fac(4);
    % x5=x1.^5/fac(5);
    %
    % x0=x1.^0/fac(1);

    S_1  = S_1';
    S2_1 = S2_1';
    S3_1 = S3_1';
    S_m  = S_m';
    S2_m = S2_m';
    S3_m = S3_m';



end