Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_4.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_4(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<8) error('Operator requires at least 8 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 4; m = 2; order = 4; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 6.8764546205559e-01; x2 = 1.8022115125776e+00; x3 = 2.8022115125776e+00; x4 = 3.8022115125776e+00; xb = sparse(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = sparse(BP,1); %#ok<*NASGU> P0 = 2.1259737557798e-01; P1 = 1.0260290400758e+00; P2 = 1.0775123588954e+00; P3 = 9.8607273802835e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.5605279837843e-01; Q0_2 = -1.9875859409017e-01; Q0_3 = 4.2705795711740e-02; Q0_4 = 0.0000000000000e+00; Q0_5 = 0.0000000000000e+00; Q1_0 = -6.5605279837843e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.1236966439895e-01; Q1_3 = -1.5631686602052e-01; Q1_4 = 0.0000000000000e+00; Q1_5 = 0.0000000000000e+00; Q2_0 = 1.9875859409017e-01; Q2_1 = -8.1236966439895e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 6.9694440364211e-01; Q2_4 = -8.3333333333333e-02; Q2_5 = 0.0000000000000e+00; Q3_0 = -4.2705795711740e-02; Q3_1 = 1.5631686602052e-01; Q3_2 = -6.9694440364211e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 6.6666666666667e-01; Q3_5 = -8.3333333333333e-02; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%