view +sbp/+implementations/d1_noneq_4.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents f7ac3cd6eeaa
children 4cb627c7fb90
line wrap: on
line source

function [D1,H,x,h] = d1_noneq_4(N,L)

% L: Domain length
% N: Number of grid points
if(nargin < 2)
    L = 1;
end

if(N<8)
    error('Operator requires at least 8 grid points');
end

% BP: Number of boundary points
% m:  Number of nonequidistant spacings
% order: Accuracy of interior stencil
BP = 4;
m = 2;
order = 4;

%%%% Non-equidistant grid points %%%%%
x0 =  0.0000000000000e+00;
x1 =  6.8764546205559e-01;
x2 =  1.8022115125776e+00;
x3 =  2.8022115125776e+00;
x4 =  3.8022115125776e+00;

xb = sparse(m+1,1);
for i = 0:m
    xb(i+1) = eval(['x' num2str(i)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Compute h %%%%%%%%%%
h = L/(2*xb(end) + N-1-2*m);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Define grid %%%%%%%%
x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ];
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Norm matrix %%%%%%%%
P = sparse(BP,1);
%#ok<*NASGU>
P0 =  2.1259737557798e-01;
P1 =  1.0260290400758e+00;
P2 =  1.0775123588954e+00;
P3 =  9.8607273802835e-01;

for i = 0:BP-1
    P(i+1) = eval(['P' num2str(i)]);
end

H = ones(N,1);
H(1:BP) = P;
H(end-BP+1:end) = flip(P);
H = spdiags(h*H,0,N,N);
%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Q matrix %%%%%%%%%%%

% interior stencil
switch order
    case 2
        d = [-1/2,0,1/2];
    case 4
        d = [1/12,-2/3,0,2/3,-1/12];
    case 6
        d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60];
    case 8
        d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280];
    case 10
        d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260];
    case 12
        d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544];
end
d = repmat(d,N,1);
Q = spdiags(d,-order/2:order/2,N,N);

% Boundaries
Q0_0 = -5.0000000000000e-01;
Q0_1 =  6.5605279837843e-01;
Q0_2 = -1.9875859409017e-01;
Q0_3 =  4.2705795711740e-02;
Q0_4 =  0.0000000000000e+00;
Q0_5 =  0.0000000000000e+00;
Q1_0 = -6.5605279837843e-01;
Q1_1 =  0.0000000000000e+00;
Q1_2 =  8.1236966439895e-01;
Q1_3 = -1.5631686602052e-01;
Q1_4 =  0.0000000000000e+00;
Q1_5 =  0.0000000000000e+00;
Q2_0 =  1.9875859409017e-01;
Q2_1 = -8.1236966439895e-01;
Q2_2 =  0.0000000000000e+00;
Q2_3 =  6.9694440364211e-01;
Q2_4 = -8.3333333333333e-02;
Q2_5 =  0.0000000000000e+00;
Q3_0 = -4.2705795711740e-02;
Q3_1 =  1.5631686602052e-01;
Q3_2 = -6.9694440364211e-01;
Q3_3 =  0.0000000000000e+00;
Q3_4 =  6.6666666666667e-01;
Q3_5 = -8.3333333333333e-02;
for i = 1:BP
    for j = 1:BP
        Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]);
        Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]);
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Difference operator %%
D1 = H\Q;
%%%%%%%%%%%%%%%%%%%%%%%%%%%