Mercurial > repos > public > sbplib
view +parametrization/old/triang_plot_interp.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 3a3cf386bb7e |
children |
line wrap: on
line source
% Plots a transfinite interpolation in x,y space using nu and nv curves along u and v axes. % Plots a interp of a triangle where one the interpolation is from a square % with one side collapsed to function h = triang_plot_interp_kindaworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; m = 20; Xl_curves = cell(n,1); Xr_curves = cell(n,1); Y_curves = cell(n,1); function u = wierdness(v,d,N) if N == 0 u = 0; else u = N*d./(1-v); end end %Y curves t = linspace(0,1,m); for i = 1:n x = []; y = []; for j = 1:length(t) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end % Right and left X curves t = linspace(0,1,m); d = u(2); for i = 1:n xl = []; yl = []; xr = []; yr = []; N = i-1; t = linspace(0,1-N*d,m); for j = 1:length(t) w = wierdness(t(j),d,N); [xr(j),yr(j)] = S(w,t(j)); [xl(j),yl(j)] = S(1-w,t(j)); end Xl_curves{i} = [xl', yl']; Xr_curves{i} = [xr', yr']; end for i = 1:n-1 line(Xl_curves{i}(:,1),Xl_curves{i}(:,2)) line(Xr_curves{i}(:,1),Xr_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) end end function h = triang_plot_interp_nonworking(S,n) u = linspace(0,1,n); v = linspace(0,1,n); m = 100; X_curves = cell(n-1,1); Y_curves = cell(n-1,1); K_curves = cell(n-1,1); t = linspace(0,1,m); for i = 1:n-1 x = []; y = []; for j = find(t+u(i) <= 1) [x(j),y(j)] = S(u(i),t(j)); end X_curves{i} = [x', y']; end for i = 1:n-1 x = []; y = []; for j = find(t+v(i) <= 1) [x(j),y(j)] = S(t(j),v(i)); end Y_curves{i} = [x', y']; end for i = 2:n x = []; y = []; for j = find(t<u(i)) [x(j),y(j)] = S(t(j), u(i)-t(j)); end K_curves{i-1} = [x', y']; end for i = 1:n-1 line(X_curves{i}(:,1),X_curves{i}(:,2)) line(Y_curves{i}(:,1),Y_curves{i}(:,2)) line(K_curves{i}(:,1),K_curves{i}(:,2)) end h = -1; % h = plot(X_curves{:},Y_curves{:},K_curves{:}); end