Mercurial > repos > public > sbplib
view +parametrization/Ti3D.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | eef74cd9b49c |
children |
line wrap: on
line source
classdef Ti3D properties gs % {6}Surfaces V % FunctionHandle(XI,ETA,ZETA) end methods % TODO write all fancy features for flipping around with the surfaces % Each surface is defined with an outward facing outward and choosing % the "corner" where XI=0 if not possible the corner where ETA=0 is choosen function obj = Ti3D(CW,CE,CS,CN,CB,CT) obj.gs = {CE,CW,CS,CN,CB,CT}; gw = CW.g; ge = CE.g; gs = CS.g; gn = CN.g; gb = CB.g; gt = CT.g; function o = V_fun(XI,ETA,ZETA) XI=XI'; ETA=ETA'; ZETA=ZETA'; one=0*ETA+1; zero=0*ETA; Sw = gw(ETA,(1-ZETA)); Se = ge((1-ETA),(1-ZETA)); Ss = gs(XI,ZETA); Sn = gn((1-XI),(1-ZETA)); Sb = gb((1-XI),ETA); St = gt(XI,ETA); Ewt = gw(ETA,zero); Ewb = gw(ETA,one); Ews = gw(zero,1-ZETA); Ewn = gw(one,1-ZETA); Eet = ge(1-ETA,zero); Eeb = ge(1-ETA,one); Ees = ge(one,1-ZETA); Een = ge(zero,1-ZETA); Enb = gn(1-XI,one); Ent = gn(1-XI,zero); Est = gs(XI,one); Esb = gs(XI,zero); Cwbs = gw(zero,one); Cwbn = gw(one,one); Cwts = gw(zero,zero); Cwtn = gw(one,zero); Cebs = ge(one,one); Cebn = ge(zero,one); Cets = ge(one,zero); Cetn = ge(zero,zero); X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:); X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:); X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:); X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:); X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:); X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:); X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:); X = X1 + X2 + X3 - X12 - X13 - X23 + X123; Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:); Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:); Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:); Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:); Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:); Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:); Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:); Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123; Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:); Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:); Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:); Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:); Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:); Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:); Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ... (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ... XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:); Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123; o = [X;Y;Z]; end obj.V = @V_fun; end %Should be rewritten so that the input is xi eta zeta function [X,Y,Z] = map(obj,XI,ETA,ZETA) V = obj.V; p = V(XI,ETA,ZETA); X = p(1,:)'; Y = p(2,:)'; Z = p(3,:)'; end % function h = plot(obj,nu,nv) % S = obj.S; % % default_arg('nv',nu) % % u = linspace(0,1,nu); % v = linspace(0,1,nv); % % m = 100; % % X = zeros(nu+nv,m); % Y = zeros(nu+nv,m); % % % t = linspace(0,1,m); % for i = 1:nu % p = S(u(i),t); % X(i,:) = p(1,:); % Y(i,:) = p(2,:); % end % % for i = 1:nv % p = S(t,v(i)); % X(i+nu,:) = p(1,:); % Y(i+nu,:) = p(2,:); % end % % h = line(X',Y'); % end % % % function h = show(obj,nu,nv) % default_arg('nv',nu) % S = obj.S; % % if(nu>2 || nv>2) % h_grid = obj.plot(nu,nv); % set(h_grid,'Color',[0 0.4470 0.7410]); % end % % h_bord = obj.plot(2,2); % set(h_bord,'Color',[0.8500 0.3250 0.0980]); % set(h_bord,'LineWidth',2); % end % % % % TRANSFORMATIONS % function ti = translate(obj,a) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.translate(a); % end % % ti = grid.Ti(new_gs{:}); % end % % % Mirrors the Ti so that the resulting Ti is still left handed. % % (Corrected by reversing curves and switching e and w) % function ti = mirror(obj, a, b) % gs = obj.gs; % % new_gs = cell(1,4); % % new_gs{1} = gs{1}.mirror(a,b).reverse(); % new_gs{3} = gs{3}.mirror(a,b).reverse(); % new_gs{2} = gs{4}.mirror(a,b).reverse(); % new_gs{4} = gs{2}.mirror(a,b).reverse(); % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate(obj,a,rad) % gs = obj.gs; % % for i = 1:length(gs) % new_gs{i} = gs{i}.rotate(a,rad); % end % % ti = grid.Ti(new_gs{:}); % end % % function ti = rotate_edges(obj,n); % new_gs = cell(1,4); % for i = 0:3 % new_i = mod(i - n,4); % new_gs{new_i+1} = obj.gs{i+1}; % end % ti = grid.Ti(new_gs{:}); % end % end % % methods(Static) % function obj = points(p1, p2, p3, p4) % g1 = grid.Curve.line(p1,p2); % g2 = grid.Curve.line(p2,p3); % g3 = grid.Curve.line(p3,p4); % g4 = grid.Curve.line(p4,p1); % % obj = grid.Ti(g1,g2,g3,g4); % end % % function label(varargin) % if nargin == 2 && ischar(varargin{2}) % label_impl(varargin{:}); % else % for i = 1:length(varargin) % label_impl(varargin{i},inputname(i)); % end % end % % % function label_impl(ti,str) % S = ti.S; % % pc = S(0.5,0.5); % % margin = 0.1; % pw = S( margin, 0.5); % pe = S(1-margin, 0.5); % ps = S( 0.5, margin); % pn = S( 0.5, 1-margin); % % % ti.show(2,2); % grid.place_label(pc,str); % grid.place_label(pw,'w'); % grid.place_label(pe,'e'); % grid.place_label(ps,'s'); % grid.place_label(pn,'n'); % end % end end end