Mercurial > repos > public > sbplib
view +multiblock/LaplaceSquared.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 2aaced07d1e5 |
children |
line wrap: on
line source
classdef LaplaceSquared < scheme.Scheme properties grid order laplaceDiffOp D H Hi a,b end methods % Discretisation of a*nabla*b*nabla function obj = LaplaceSquared(g, order, a, b, opGen) default_arg('order', 4); default_arg('a', 1); default_arg('b', 1); default_arg('opGen', @sbp.D4Variable); if isscalar(a) a = grid.evalOn(g, a); end if isscalar(b) b = grid.evalOn(g, b); end obj.grid = g; obj.order = order; obj.a = a; obj.b = b; obj.laplaceDiffOp = multiblock.Laplace(g, order, 1, 1, opGen); obj.H = obj.laplaceDiffOp.H; obj.Hi = spdiag(1./diag(obj.H)); A = spdiag(a); B = spdiag(b); D_laplace = obj.laplaceDiffOp.D; obj.D = A*D_laplace*B*D_laplace; end function s = size(obj) s = size(obj.laplaceDiffOp); end function op = getBoundaryOperator(obj, opName, boundary) switch opName case 'e' op = getBoundaryOperator(obj.laplaceDiffOp, 'e', boundary); case 'd1' op = getBoundaryOperator(obj.laplaceDiffOp, 'd', boundary); case 'd2' e = getBoundaryOperator(obj.laplaceDiffOp, 'e', boundary); op = (e'*obj.laplaceDiffOp.D)'; case 'd3' d1 = getBoundaryOperator(obj.laplaceDiffOp, 'd', boundary); op = (d1'*spdiag(obj.b)*obj.laplaceDiffOp.D)'; end end function op = getBoundaryQuadrature(obj, boundary) op = getBoundaryQuadrature(obj.laplaceDiffOp, boundary); end function [closure, penalty] = boundary_condition(obj,boundary,type) % TODO: Change name to boundaryCondition switch type case 'e' error('Bc of type ''e'' not implemented') case 'd1' error('Bc of type ''d1'' not implemented') case 'd2' e = obj.getBoundaryOperator('e', boundary); d1 = obj.getBoundaryOperator('d1', boundary); d2 = obj.getBoundaryOperator('d2', boundary); H_b = obj.getBoundaryQuadrature(boundary); A = spdiag(obj.a); B_b = spdiag(e'*obj.b); tau = obj.Hi*A*d1*B_b*H_b; closure = tau*d2'; penalty = -tau; case 'd3' e = obj.getBoundaryOperator('e', boundary); d3 = obj.getBoundaryOperator('d3', boundary); H_b = obj.getBoundaryQuadrature(boundary); A = spdiag(obj.a); tau = -obj.Hi*A*e*H_b; closure = tau*d3'; penalty = -tau; end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('Not implemented') end end end